On Compressing Encrypted Data without the Encryption Key

  • Mark Johnson
  • David Wagner
  • Kannan Ramchandran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2951)

Abstract

When it is desired to transmit redundant data over an insecure and bandwidth-constrained channel, it is customary to first compress the redundant data and then encrypt it for security reasons. In this paper, we investigate the novelty of reversing the order of these steps, i.e. first encrypting and then compressing. Although counter-intuitive, we show surprisingly that through the use of coding with side information principles, this reversal in order is indeed possible. In fact, for lossless compression, we show that the theoretical compression gain is unchanged by performing encryption before compression. We show that the cryptographic security of the reversed system is directly related to the strength of the key generator.

References

  1. 1.
    Schneier, B.: Applied Cryptography. Wiley, New York (1996)Google Scholar
  2. 2.
    Slepian, D.K., Wolf, J.K.: Noiseless Coding of Correlated Information Sources. IEEE Transactions on Information Theory 19, 471–480 (1973)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Csiszar, I.: Linear Codes for Sources and Source Networks: Error Exponents, Universal Coding. IEEE Transactions on Information Theory 28, 585–592 (1982)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)MATHCrossRefGoogle Scholar
  5. 5.
    Pradhan, S.S., Ramchandran, K.: Distributed Source Coding Using Syndromes (DISCUS): Design and Construction. In: Proceedings of the Data Compression Conference (DCC), Snowbird, UT (March 1999)Google Scholar
  6. 6.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of Symmetric Encryption: Analysis of the DES Modes of Operation. In: 38th Symposium on Foundations of Computer Science, Miami Beach, FL (October 1997)Google Scholar
  7. 7.
    Wicker, S.: Error Control Systems for Digital Communication and Storage. Prentice Hall, Englewood Cliffs (1995)MATHGoogle Scholar
  8. 8.
    Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes. In: IEEE International Conference on Communications, Geneva, Switzerland (May 1993)Google Scholar
  9. 9.
    Gallager, R.G.: Low Density Parity Check Codes. PhD thesis, MIT, Cambridge, MA (1963)Google Scholar
  10. 10.
    Sipser, M., Spielman, D.A.: Expander codes. IEEE Transactions on Information Theory 42, 1710–1722 (1996)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Schonberg, D., Ramchandran, K., Pradhan, S.S.: LDPC Codes Can Approach the Slepian Wolf Bound for General Binary Sources. In: 40th Annual Allerton Conference (October 2002)Google Scholar
  12. 12.
    Liveris, D., Xiong, Z., Georghiades, C.N.: Compression of Binary Sources with Side Information Using Low-Density Parity-Check Codes. IEEE Communication Letters (2002)Google Scholar
  13. 13.
    Garcia-Frias, J., Zhao, Y.: Compression of Correlated Binary Sources Using Turbo Codes. IEEE Communication Letters (October 2001)Google Scholar
  14. 14.
    Aaron, A., Girod, B.: Compression with Side Information Using Turbo Codes. In: IEEE Data Compression Conference (April 2002)Google Scholar
  15. 15.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, New York (1997)MATHGoogle Scholar
  16. 16.
    Witsenhausen, H., Wyner, A.D.: Interframe coder for video signals (1980) (United States Patent Number 4,191,970)Google Scholar
  17. 17.
    Gamal, E., Orlitsky, A.: Interactive data compression. In: Proceedings 25th IEEE Symposium on Foundations of Computer Science, October 1984, pp. 100–108 (1984)Google Scholar
  18. 18.
    Orlitsky, A.: Communication Issues in Distributed Computing. PhD thesis, Stanford University, Electrical Engineering Department (1986)Google Scholar
  19. 19.
    Feder, T., Kushilevitz, E., Naor, M., Nisan, N.: Amortized communication complexity. SIAM Journal on Computing 24(4), 736–750 (1995)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Orlitsky, A.: Interactive communication of balanced distributions and of correlated files. SIAM J. Discret. Math. 6, 548–564 (1993)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Cormode, G., Paterson, M., Sahinalp, S.C., Vishkin, U.: Communication complexity of document exchange. In: Proceedings of the 11th annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, pp. 197–206 (2000)Google Scholar
  22. 22.
    Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors and constant-degree lossless expanders. In: Proceedings of the 34th annual ACM symposium on Theory of computing, pp. 659–668. ACM Press, New York (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Mark Johnson
    • 1
  • David Wagner
    • 1
  • Kannan Ramchandran
    • 1
  1. 1.Department of Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeleyUSA

Personalised recommendations