Molecular Tiling and DNA Self-assembly

  • Alessandra Carbone
  • Nadrian C. Seeman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2950)


We examine hypotheses coming from the physical world and address new mathematical issues on tiling. We hope to bring to the attention of mathematicians the way that chemists use tiling in nanotechnology, where the aim is to propose building blocks and experimental protocols suitable for the construction of 1D, 2D and 3D macromolecular assembly. We shall especially concentrate on DNA nanotechnology, which has been demonstrated in recent years to be the most effective programmable self-assembly system. Here, the controlled construction of supramolecular assemblies containing components of fixed sizes and shapes is the principal objective. We shall spell out the algorithmic properties and combinatorial constraints of “physical protocols”, to bring the working hypotheses of chemists closer to a mathematical formulation.


Sequential Assembly Holliday Junction Hierarchical Assembly Fractal Assembly Tile Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Adleman, L.M.: Toward a mathematical theory of self-assembly. Technical Report 00-722, Department of Computer Science. University of Southern California (2000)Google Scholar
  3. 3.
    Adleman, L.M., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., Moisset de Espanés, P., Rothemund, P.W.K.: Combinatorial optimisation problems in self-assembly. In: STOC 2002 Proceedings, Montreal Quebec, Canada (2002)Google Scholar
  4. 4.
    Aggeli, A., Bell, M., Boden, N., Keen, J.N., Knowles, P.F., McLeish, T.C.B., Pitkeathly, M., Radford, S.E.: Responsive gels formed by the spontaneous selfassembly of peptides into polymeric beta-sheet tapes. Nature 386, 259–262 (1997)CrossRefGoogle Scholar
  5. 5.
    Ball, P.: Materials Science: Polymers made to measure. Nature 367, 323–324 (1994)CrossRefGoogle Scholar
  6. 6.
    Carbone, A., Gromov, M.: Mathematical slices of molecular biology, La Gazette des Mathématiciens. Numéro Spéciale 88, 11–80 (2001)zbMATHGoogle Scholar
  7. 7.
    Carbone, A., Seeman, N.C.: Circuits and programmable self-assembling DNA structures. Proceedings of the National Academy of Sciences USA 99, 12577–12582 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Carbone, A., Seeman, N.C.: A route to fractal DNA-assembly. Natural Computing 1, 469–480 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Carbone, A., Seeman, N.C.: Coding and geometrical shapes in nanostructures: a fractal DNA-assembly. Natural Computing (2003) (in press)Google Scholar
  10. 10.
    Cohen, S.N., Chang, A.C.Y., Boyer, H.W., Helling, R.B.: Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Science USA 70, 3240–3244 (1973)CrossRefGoogle Scholar
  11. 11.
    Diegelman, A.M., Kool, E.T.: Generation of circular RNAs and trans-cleaving catalytic RNAs by rolling transcription of circular DNA oligonucleotides encoding hairpin ribozymes. Nucleic Acids Research 26, 3235–3241 (1998)CrossRefGoogle Scholar
  12. 12.
    Du, S.M., Zhang, S., Seeman, N.C.: DNA Junctions, Antijunctions and Mesojunctions. Biochemistry 31, 10955–10963 (1992)CrossRefGoogle Scholar
  13. 13.
    Duhnam, I., Shimizu, N., Roe, B.A., et al.: The DNA sequence of human chromosome 22. Nature 402, 489–495 (1999)CrossRefGoogle Scholar
  14. 14.
    Eichman, B.F., Vargason, J.M., Mooers, B.H.M., Ho, P.S.: The Holliday junction in an inverted repeat DNA sequence: Sequence effects on the structure of four-way junctions. Proceedings of the National Academy of Science USA 97, 3971–3976 (2000)CrossRefGoogle Scholar
  15. 15.
    Felsenfeld, G., Davies, D.R., Rich, A.: Formation of a three-stranded polynucleotide molecule. J. Am. Chem. Soc. 79, 2023–2024 (1957)CrossRefGoogle Scholar
  16. 16.
    Fu, T.-J., Kemper, B., Seeman, N.C.: Endonuclease VII cleavage of DNA double crossover molecules. Biochemistry 33, 3896–3905 (1994)CrossRefGoogle Scholar
  17. 17.
    Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W.H. Freeman and Company, New York (1986)Google Scholar
  18. 18.
    Hartgerink, J.D., Beniash, E., Stupp, S.I.: Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684 (2001)CrossRefGoogle Scholar
  19. 19.
    Huck, I., Lehn, J.M.: Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. Proceedings of the National Academy of Sciences USA 94, 2106–2110 (1997)CrossRefGoogle Scholar
  20. 20.
    Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages. Theoretical Computer Science 290, 1557–1579 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Jaeger, L., Westhof, E., Leontis, N.B.: TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Research 29, 455–463 (2001)CrossRefGoogle Scholar
  22. 22.
    Jonoska, N.: 3D DNA patterns and Computing. In: Carbone, A., Gromov, M., Prusinkiewicz, P. (eds.) Pattern formation in Biology, Vision and Dynamics, pp. 310–324. World Scientific Publishing Company, Singapore (2000)CrossRefGoogle Scholar
  23. 23.
    von Kiedrowski, G.: Personal communication (February 2003)Google Scholar
  24. 24.
    LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)CrossRefGoogle Scholar
  25. 25.
    LaBean, T.H., Winfree, E., Reif, J.H.: Experimental progress in computation by self-assembly of DNA tilings. In: Win-free, E., Gifford, D.K. (eds.) Proc. DNA Based Computers V. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 54, pp. 123–140. American Mathematical Society, Providence (2000)Google Scholar
  26. 26.
    Lehn, J.M.: Sopramolecular Chemistry. Science 260, 1762–1763 (1993)Google Scholar
  27. 27.
    Lehn, J.M.: Toward complex matter: Supramolecular chemistry and selforganisation. Proceedings of the National Academy of Science USA 99(8), 4763–4768 (2002)CrossRefGoogle Scholar
  28. 28.
    Liu, F., Sha, R., Seeman, N.C.: Modifying the surface features of two-dimensional DNA crystals. Journal of the American Chemical Society 121, 917–922 (1999)CrossRefGoogle Scholar
  29. 29.
    Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. Journal of the American Chemical Society 121, 5437–5443 (1999)CrossRefGoogle Scholar
  30. 30.
    Mao, C., LaBean, T., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000); Nature Erratum 408, 750–750 (2000)Google Scholar
  31. 31.
    Qiu, H., Dewan, J.C., Seeman, N.C.: A DNA decamer with a sticky end: the Ccystal structure of d-CGACGATCGT. Journal of Molecular Biology 267, 881–898 (1997)CrossRefGoogle Scholar
  32. 32.
    Reif, J.H.: Local parallel biomolecular computation. In: Rubin, H. (ed.) DNA Based Computers, III. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 48, pp. 217–254. American Mathematical Society, Providence (1999)Google Scholar
  33. 33.
    Reif, J.H.: Molecular assembly and computation: from theory to experimental demonstrations. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 1–21. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  34. 34.
    Sa-Ardyen, P., Jonoska, N., Seeman, N.C.: Self-assembling DNA graphs. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 1–9. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  35. 35.
    Schnur, J.M.: Lipid tubules: a paradigm for molecularly engineered structures. Science 262, 1669–1676 (1993)CrossRefGoogle Scholar
  36. 36.
    Seeman, N.C.: Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982)CrossRefGoogle Scholar
  37. 37.
    Seeman, N.C., Kallenbach, N.R.: Design of immobile nucleic acid junctions. Biophysical Journal 44, 201–209 (1983)CrossRefGoogle Scholar
  38. 38.
    Seeman, N.C., Kallenbach, N.R.: Nucleic-acids junctions: a successfull experiment in macromolecular design. In: Stezowski, J.J., Huang, J.L., Shao, M.C. (eds.) Molecular Structure: Chemical Reactivity and Biological Activity, pp. 189–194. Oxford University Press, Oxford (1988)Google Scholar
  39. 39.
    Seeman, N.C.: DNA engineering and its application to nanotechnology. Trends in Biotech. 17, 437–443 (1999)CrossRefGoogle Scholar
  40. 40.
    Seeman, N.C.: DNA nanotechnology: from topological control to structural control. In: Carbone, A., Gromov, M., Prusinkiewicz, P. (eds.) Pattern formation in Biology, Vision and Dynamics, pp. 310–324. World Scientific Publishing Company, Singapore (2000)Google Scholar
  41. 41.
    Seeman, N.C.: In the nick of space: Generalized nucleic acid complementarity and the development of DNA nanotechnology. Synlett, 1536–1548 (2000)Google Scholar
  42. 42.
    Sen, D., Gilbert, W.: Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and applications to meiosis. Nature 334, 364–366 (1988)CrossRefGoogle Scholar
  43. 43.
    Sha, R., Liu, F., Millar, D.P., Seeman, N.C.: Atomic force microscopy of parallel DNA branched junction arrays. Chemistry & Biology 7, 743–751 (2000)CrossRefGoogle Scholar
  44. 44.
    Shen, Z.: DNA Polycrossover Molecules and their Applications in Homology Recognition. Ph.D. Thesis, New York University (1999)Google Scholar
  45. 45.
    Sherman, W.B., Seeman, N.C.: Abstract The design of nucleic acid nanotubes. Appeared in Journal of Biomolecular Structure & Dynamics (2003) (in Preparation), online at
  46. 46.
    Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002)CrossRefGoogle Scholar
  47. 47.
    Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)CrossRefGoogle Scholar
  48. 48.
    Wang, H.: Proving theorems by pattern recognition. Bell System Tech. J. 40, 1–42 (1961)Google Scholar
  49. 49.
    Wang, H.: Dominos and the AEA case of the decision problem. In: Proceedings of the Symposium on the Mathematical Theory of Automata, Polytechnic, New York, pp. 23–56 (1963)Google Scholar
  50. 50.
    Wang, H.: Games, logic and computers. Scientific American, pp. 98–106 (November 1965)Google Scholar
  51. 51.
    Wang, Y., Mueller, J.E., Kemper, B., Seeman, N.C.: The assembly and characterization of 5-arm and 6-arm DNA junctions. Biochemistry 30, 5667–5674 (1991)CrossRefGoogle Scholar
  52. 52.
    Whitesides, G.M., Mathias, J.P., Seto, C.T.: Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991)CrossRefGoogle Scholar
  53. 53.
    Wikoff, W.R., Liljas, L., Duda, R.L., Tsuruta, H., Hendrix, R.W., Johnson, J.E.: Topologically linked protein rings in the bacteriophage HK97 caspid. Science 289, 2129–2133 (2000)CrossRefGoogle Scholar
  54. 54.
    Winfree, E.: On the computational power of DNA annealing and ligation. In: Lipton, R.J., Baum, E.B. (eds.) DNA based computers, Proceedings of a DIMACS workshop, Princeton University, pp. 199–219. AMS Providence (1996)Google Scholar
  55. 55.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  56. 56.
    Winfree, E.: Algorithmic self-assembly of DNA: theoretical motivations and 2D assembly experiments. J. Biol. Mol. Struct. Dynamics Conversat. 2, 263–270 (2000)Google Scholar
  57. 57.
    Zhang, S., Holmes, T., Lockshin, C., Rich, A.: Spontaneous assembly of a selfcomplementary oligopeptide to form a stable macroscopic membrane. Proceeding of the National Academy of Sciences USA 90, 3334–3338 (1993)CrossRefGoogle Scholar
  58. 58.
    Zhang, Y., Seeman, N.C.: A solid-support methodology for the construction of geometrical objects from DNA. J. Am. Chem. Soc. 114, 2656–2663 (1992)CrossRefGoogle Scholar
  59. 59.
    Zhang, Y., Seeman, N.C.: The construction of a DNA truncated octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1994)CrossRefGoogle Scholar
  60. 60.
    Zhang, X., Yan, H., Shen, Z., Seeman, N.C.: Paranemic cohesion of topologicallyclosed DNA molecules. J. Am. Chem. Soc. 124, 12940–12941 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alessandra Carbone
    • 1
  • Nadrian C. Seeman
    • 2
  1. 1.Institut des Hautes Études ScientifiquesBures-sur-YvetteFrance
  2. 2.Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations