Contextual Exploration of Text Collections

  • Manuel Montes-y-Gómez
  • Manuel Pérez-Coutiño
  • Luis Villaseñor-Pineda
  • Aurelio López-López
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2945)


Nowadays there is a large amount of digital texts available for every purpose. New flexible and robust approaches are necessary for their access and analysis. This paper proposes a text exploration scheme based on hypertext, which incorporates some elements from information retrieval and text mining in order to transform the blind navigation of the hypertext into a step-by-step informed exploration. The proposed scheme is of relevance since it integrates three basic exploration functionalities, i.e. access, navigation and analysis. The paper also presents some preliminary results on the generation of hypertext from two text collections in an implementation of the scheme.


automatic text processing information retrieval hypertext text mining metadata information visualization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeza-Yates, Ribeiro-Neto: Modern Information Retrieval. Addison-Wesley, Reading (1999)Google Scholar
  2. 2.
    Cutting, Karger, Pedersen, Tukey: Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections. In: Proceedings of the 15th Annual International ACM/SIGIR Conference (1992)Google Scholar
  3. 3.
    Feldman, Klösgen, Yehuda, Kedar, Reznikov: Pattern Based Browsing in Document Collections. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Galicia-Haro, S.N., Gelbukh, A., Bolshakov, I.A.: Recognition of Named Entities in Spanish Texts. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 420–429. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Gay, Croft: Interpreting Nominal Compounds for Information Retrieval. Information Processing and Management 26(1), 21–38 (1990)CrossRefGoogle Scholar
  6. 6.
    Gelbukh, A., Sidorov, G.: Approach to construction of automatic morphological analysis systems for inflective languages with little effort. In: Gelbukh, A. (ed.) CICLing 2003. LNCS, vol. 2588, pp. 215–220. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Hearst: Untangling Text Data Mining. In: Proc. of ACL 1999: The 37th Annual Meeting of the Association for Computational Linguistics (1999)Google Scholar
  8. 8.
    Levene, Loizou: Navigation in hypertext is easy only sometimes. SIAM Journal on Computing 29(3), 728–760 (1999)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Lin: An Information-Theoretic Definition of Similarity. In: Proc. of the International Conference on Machine Learning (1998)Google Scholar
  10. 10.
    Shneiderman, Kearsley: Hipertext Hands On! Addison Wesley, Reading (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Manuel Montes-y-Gómez
    • 1
  • Manuel Pérez-Coutiño
    • 1
  • Luis Villaseñor-Pineda
    • 1
  • Aurelio López-López
    • 1
  1. 1.Laboratorio de Tecnologías del LenguajeINAOEMexico

Personalised recommendations