Hierarchies Measuring Qualitative Variables

  • Serguei Levachkine
  • Adolfo Guzmán-Arenas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2945)


Qualitative variables take symbolic values, such as hot, shoe, Europe or France. Sometimes, the values may be arranged in layers or levels of detail. For instance, the variable place_of_origin takes as level-1 values European, African level-2 values French, German level-3 values Californian, Texan ...The paper describes a hierarchy, a mathematical construct among these variables. The confusion resulting when using a value instead of another is defined, as well as the closeness to which object o fulfills predicate P. Other operations among and properties of hierarchical values are derived. Hierarchies are compared with ontologies. Hierarchies find use in measuring linguistic relatedness or similarity. Hierarchical variables abound and are commonly used, often with suggestive string values, without fully realizing or exploiting its properties. We deal with arbitrary hierarchies. Examples are given.


Qualitative Variable Semantic Distance Complete Chain Expert System Application Natural Language Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandrov, V., Arsentieva, A.: Dialogue Structure (Dialogue – Is It an Art or Science?). Leningrad Inst. for Informatics and Aut. of the USSR Acad. of Sciences (1984)Google Scholar
  2. 2.
    Alexandrov, V.: Developing Systems in Science, Technique, Society and Culture. Nauka, Saint Petersburg (2002)Google Scholar
  3. 3.
    Bolshakov, I.A., Gelbukh, A.: Text segmentation into paragraphs based on local text cohesion. In: Matoušek, V., Mautner, P., Mouček, R., Tauser, K. (eds.) TSD 2001. LNCS (LNAI), vol. 2166, pp. 158–166. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bolshakov, I.A., Gelbukh, A.: Heuristics-based replenishment of collocation databases. In: Ranchhod, E., Mamede, N.J. (eds.) PorTAL 2002. LNCS (LNAI), vol. 2389, pp. 25–32. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Budanitsky, A., Hirst, G.: Semantic Distance in WordNet: An Experimental, Applicationoriented Evaluation of Five Measures. In: Workshop on WordNet and Other Lexical Resources, in the North American Chapter of the Association for Computational Linguistics (NAACL 2000), Pittsburgh, PA, June 2001 (2000)Google Scholar
  6. 6.
    Gelbukh, A.: Using a semantic network for lexical and syntactical disambiguation. In: Proc. CIC 1997, Simposium Internacional de Computación, CIC, IPN, Mexico City, Mexico, 12-14, pp. 352–366 (1997),
  7. 7.
    Guzman, A.: Finding the Main Themes in a Spanish Document. Journal Expert Systems with Applications 14(1/2), 139–148 (1998)CrossRefGoogle Scholar
  8. 8.
    Guzman, A., Olivares, J., Demetrio, D., Dominguez, C.: Interaction of Purposeful Agents that use Different Ontologies. In: Cairó, O., Cantú, F.J. (eds.) MICAI 2000. LNCS (LNAI), vol. 1793, pp. 557–573. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Guzmán, A., Domínguez, C., Olivares, J.: Reacting to Unexpected Events and Communicating in Spite of Mixed Ontologies. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 377–386. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Guzmán-Arenas, A., Levachkine, S.: Graduated Errors in Approximate Queries Using Hierarchies and Ordered Sets. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 119–128. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    de Gyves, V., Guzman, A.: BiblioDigital. © SoftwarePro International (work in progress)Google Scholar
  12. 12.
    Lenat, D.B., Guha, R.V.: Building Large Knowledge-Based Systems. Addison-Wesley, Reading (1989)Google Scholar
  13. 13.
    Levachkine, S., Guzman, A.: Hierarchies as a New Data Type for Qualitative Variables. Submitted to the Journal of Data Knowledge Engineering (2002)Google Scholar
  14. 14.
    Levachkine, S., Guzman, A.: Confusion between hierarchies partitioned by a Percentage rule. Submitted to MICAI 2004 (2004)Google Scholar
  15. 15.
    Montes-y-Gómez, M., López-López, A., Gelbukh, A.: Information Retrieval with Conceptual Graph Matching. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 312–321. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Montes-y-Gómez, M., Gelbukh, A., López-López, A., Baeza-Yates, R.: Flexible Comparison of Conceptual Graphs. In: Mayr, H.C., Lazanský, J., Quirchmayr, G., Vogel, P. (eds.) DEXA 2001. LNCS, vol. 2113, pp. 102–111. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Olivares, J., Guzman, A.: Measuring the Comprehension or Understanding between two Agents (to appear)Google Scholar
  18. 18.
    Resnik, P.: Disambiguating Noun Groupings with respect to WordNet Senses. In: Armstrong, S., et al. (eds.) Natural Language Processing Using Very Large Corpora, pp. 77–98. Kluwer Academic Publishing, Dordrecht (1995)Google Scholar
  19. 19.
    Simon, J.-C.: Patterns and Operators. The Foundations of Data Representation. McGraw-Hill, New York (1984)Google Scholar
  20. 20.
    WordNet: A Lexical Database for the English Language,
  21. 21.
    Zárate, A., Pazos, R., Gelbukh, A., Padrón, I.: A portable natural language interface for diverse databases using ontologies. In: Gelbukh, A. (ed.) CICLing 2003. LNCS, vol. 2588, pp. 494–505. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Serguei Levachkine
    • 1
  • Adolfo Guzmán-Arenas
    • 1
  1. 1.National Polytechnic Institute (IPN) UPALMZCentre for Computing Research (CIC)Mexico CityMexico

Personalised recommendations