Advertisement

A Probabilistic Chart Parser Implemented with an Evolutionary Algorithm

  • Lourdes Araujo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2945)

Abstract

Classic parsing methods use complete search techniques to find the different interpretations of a sentence. However, the size of the search space increases exponentially with the length of the sentence or text to be parsed and the size of the grammar, so that exhaustive search methods can fail to reach a solution in a reasonable time. Nevertheless, large problems can be solved approximately by some kind of stochastic techniques, which do not guarantee the optimum value, but allow adjusting the probability of error by increasing the number of points explored. Evolutionary Algorithms are among such techniques. This paper presents a stochastic chart parser based on an evolutionary algorithm which works with a population of partial parsings. The paper describes the relationships between the elements of a classic chart parser and those of the evolutionary algorithm. The model has been implemented, and the results obtained for texts extracted from the Susanne corpus are presented.

Keywords

Evolutionary programming Partial Parsing Probabilistic Grammars 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J.: Natural Language Understanding. Benjamin/Cumming Publ. (1994)Google Scholar
  2. 2.
    Araujo, L.: A parallel evolutionary algorithm for stochastic natural language parsing. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, p. 700. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Araujo, L.: Part-of-speech tagging with evolutionary algorithms. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 230–239. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Charniak, E.: Statistical Language Learning. MIT Press, Cambridge (1993)Google Scholar
  5. 5.
    Gelbukh, A., Sidorov, G., Han, S.-Y.: Evolutionary Approach to Natural Language Word Sense Disambiguation Through Global Coherence Optimization. WSEAS Transaction on Communications 1(2), 11–19 (2003)Google Scholar
  6. 6.
    Gelbukh, A., Han, S., Sidorov, G.: Compression of Boolean inverted files by document ordering. In: NLPKE 2003. Nat. Lang. Proc. & Knowl. Eng. IEEE Comp., Los Alamitos (2003)Google Scholar
  7. 7.
    Keller, B., Lutz, R.: Evolving stochastic context-free grammars from examples using a minimum description length principle. In: Worksop on Automata Induction, Grammatical Inference and Language Acquisition, ICML 1997 (1997)Google Scholar
  8. 8.
    Kool, A.: Literature survey (2000)Google Scholar
  9. 9.
    Losee, R.M.: Learning syntactic rules and tags with genetic algorithms for information retrieval and filtering: an empirical basis for grammatical rules. Information Processing & Management 32(2), 185–197 (1996)CrossRefGoogle Scholar
  10. 10.
    Dunning, T., Davis, M.: Query translation using evolutionary programming for multilingual information retrieval II. In: Proc. of the Fifth Annual Conf. on Evolutionary Programming. Evolutionary Programming Society (1996)Google Scholar
  11. 11.
    Sampson, G.: English for the Computer. Clarendon Press, Oxford (1995)Google Scholar
  12. 12.
    Smith, T.C., Witten, I.H.: A genetic algorithm for the induction of natural language grammars. In: Proc. IJCAI 1995 Workshop on New Approaches to Learning Natural Language, Montreal, Canada, pp. 17–24 (1995)Google Scholar
  13. 13.
    Wyard, P.: Context free grammar induction using genetic algorithms. In: Proc. of the 4th Int. Conf. on Genetic Algorithms, pp. 514–518 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Lourdes Araujo
    • 1
  1. 1.Dpto. Sistemas Informáticos y ProgramaciónUniversidad Complutense de MadridSpain

Personalised recommendations