Self-Assembled Circuit Patterns

  • Matthew Cook
  • Paul W. K. Rothemund
  • Erik Winfree
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2943)

Abstract

Self-assembly is a process in which basic units aggregate under attractive forces to form larger compound structures. Recent theoretical work has shown that pseudo-crystalline self-assembly can be algorithmic, in the sense that complex logic can be programmed into the growth process [26]. This theoretical work builds on the theory of two-dimensional tilings [8], using rigid square tiles called Wang tiles [24] for the basic units of self-assembly, and leads to Turing-universal models such as the Tile Assembly Model [28]. Using the Tile Assembly Model, we show how algorithmic self-assembly can be exploited for fabrication tasks such as constructing the patterns that define certain digital circuits, including demultiplexers, RAM arrays, pseudowavelet transforms, and Hadamard transforms. Since DNA self-assembly appears to be promising for implementing the arbitrary Wang tiles [30,13] needed for programming in the Tile Assembly Model, algorithmic self-assembly methods such as those presented in this paper may eventually become a viable method of arranging molecular electronic components [18], such as carbon nanotubes [10,1], into molecular-scale circuits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C.: Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001)CrossRefGoogle Scholar
  2. 2.
    Beauchamp, K.G.: Walsh Functions and Their Applications. Academic Press, London (1975)MATHGoogle Scholar
  3. 3.
    Boncheva, M., Gracias, D.H., Jacobs, H.O., Whitesides, G.M.: Biomimetic selfassembly of a functional asymmetrical electronic device. PNAS 99(8), 4937–4940 (2002)CrossRefGoogle Scholar
  4. 4.
    Carbone, A., Seeman, N.C.: Circuits and programmable self-assembling DNA structures. PNAS 99(20), 12577–12582 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cheng, Q., de Espanes, P.M.: Resolving two open problems in the self-assembly of squares. Usc computer science technical report #03-793, University of Southern California (2003)Google Scholar
  6. 6.
    Collier, C.P., Wong, E.W., Belohradsky, M., Raymo, F.M., Stoddart, J.F., Kuekes, P.J., Williams, R.S., Heath, J.R.: Electronically configurable molecularbased logic gates. Science 285, 391–394 (1999)CrossRefGoogle Scholar
  7. 7.
    Gracias, D.H., Tien, J., Breen, T.L., Hsu, C., Whitesides, G.M.: Forming electrical networks in three dimensions by self-assembly. Science 289, 1170–1172 (2000)CrossRefGoogle Scholar
  8. 8.
    Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W.H. Freeman and Company, New York (1987)MATHGoogle Scholar
  9. 9.
    Harmuth, H.F.: Applications of walsh functions in communications. IEEE Spectrum 6, 82–91 (1969)CrossRefGoogle Scholar
  10. 10.
    Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.-H., Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294, 1313–1317 (2001)CrossRefGoogle Scholar
  11. 11.
    Jacobs, H.O., Tao, A.R., Schwartz, A., Gracias, D.H., Whitesides, G.M.: Fabrication of a cylindrical display by patterned assembly. Science 296, 323–325 (2000)CrossRefGoogle Scholar
  12. 12.
    Lagoudakis, M.G., LaBean, T.H.: 2D DNA self-assembly for satisfiability. In: Winfree, E., Gifford, D.K. (eds.) DNA Based Computers V. DIMACS, vol. 54, pp. 141–154. American Mathematical Society, Providence (2000)Google Scholar
  13. 13.
    Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407(6803), 493–496 (2000)CrossRefGoogle Scholar
  14. 14.
    Pease, A.R., Jeppesen, J.O., Stoddart, J.F., Luo, Y., Collier, C.P., Heath, J.R.: Switching devices based on interlocked molecules. Acc. Chem. Res. 34, 433–444 (2001)CrossRefGoogle Scholar
  15. 15.
    Pigeon, S., Bengio, Y.: Binary pseudowavelets and applications to bilevel image processing. In: Data Compression Conference (DCC 1999), pp. 364–373 (1999)Google Scholar
  16. 16.
    Pratt, W., Kane, J., Andrews, H.: Hadamard transform image coding. Proceedings of the IEEE 57(1), 58–68 (1969)CrossRefGoogle Scholar
  17. 17.
    Puente-Baliarda, C., Romeu, J., Pous, R., Cardama, A.: On the behavior of the sierpinski multiband fractal antenna. IEEE Transactions on Antennas and Propagation 46(4), 517–524 (1998)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Robinson, B.H., Seeman, N.C.: The design of a biochip: A self-assembling molecular-scale memory device. Protein Engineering 1(4), 295–300 (1987)CrossRefGoogle Scholar
  19. 19.
    Rothemund, P.W.K.: Using lateral capillary forces to compute by self-assembly. PNAS 97, 984–989 (2000)CrossRefGoogle Scholar
  20. 20.
    Rothemund, P.W.K., Winfree, E.: The program size complexity of selfassembled squares. In: Symposium on the Theory of Computing, STOC 2000 (2000)Google Scholar
  21. 21.
    Sylvester, J.J.: Thoughts on orthogonal matrices, simultaneous sign-successions, and tessellated pavements in two or more colours, with applications to newton’s rule, ornamental tile-work, and the theory of numbers. Phil. Mag. 34, 461–475 (1867)Google Scholar
  22. 22.
    Tzafestas, S.G.: Walsh Functions in Signal and Systems Analysis and Design. Van Nostrand Reinhold, New York (1985)Google Scholar
  23. 23.
    Walsh, J.L.: A closed set of normal orthogonal functions. Amer. J. Math. 45, 5–24 (1923)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Wang, H.: Proving theorems by pattern recognition. II. Bell System Technical Journal 40, 1–42 (1961)Google Scholar
  25. 25.
    Williams, K.A., Veenhuizen, P.T., de la Torre, B.G., Eritja, R., Dekker, C.: Carbon nanotubes with DNA recognition. Nature 420, 761 (2002)CrossRefGoogle Scholar
  26. 26.
    Winfree, E.: On the computational power of DNA annealing and ligation. In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers. DIMACS, vol. 27, pp. 199–221. American Mathematical Society, Providence (1996)Google Scholar
  27. 27.
    Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology, Computation and Neural Systems Option (1998)Google Scholar
  28. 28.
    Winfree, E.: Simulations of computing by self-assembly. Technical Report CSTR: 1998.22, Caltech (1998)Google Scholar
  29. 29.
    Winfree, E.: Algorithmic self-assembly of DNA: Theoretical motivations and 2D assembly experiments. Journal of Biomolecular Structure & Dynamics, 263–270 (2000) (special issue S2)Google Scholar
  30. 30.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  31. 31.
    Yarlagadda, R., Hershey, J.: Hadamard Matrix Analysis and Synthesis With Applications to communications and Signal/Image Processing. Kluwer Academic Publishers, Boston (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Matthew Cook
    • 1
  • Paul W. K. Rothemund
    • 1
  • Erik Winfree
    • 1
  1. 1.Computer Science and Computation & Neural SystemsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations