Image Steganography and Steganalysis: Concepts and Practice

  • Rajarathnam Chandramouli
  • Mehdi Kharrazi
  • Nasir Memon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2939)


In the last few years, we have seen many new and powerful steganography and steganalysis techniques reported in the literature. In the following paper we go over some general concepts and ideas that apply to steganography and steganalysis. Specifically we establish a framework and define notion of security for a steganographic system. We show how conventional definitions do not really adequately cover image steganography and an provide alternate definition. We also review some of the more recent image steganography and steganalysis techniques.


Cover Image Secret Message Information Hiding Stego Image Hide Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simmons, G.: The prisoners problem and the subliminal channel. In: CRYPTO, pp. 51–67 (1983)Google Scholar
  2. 2.
    Johnson, N.F., Katzenbeisser, S.: A survay of steganographic techniques. In: Katzenbeisser, S., Petitcolas, F. (eds.) Information Hiding, pp. 43–78. Artech House, Norwood (2000)Google Scholar
  3. 3.
    Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Zollner, J., Federrath, H., Klimant, H., Pfitzman, A., Piotraschke, R., Westfeld, A., Wicke, G., Wolf, G.: Modeling the security of steganographic systems. In: 2nd Information Hiding Workshop, April 1998, pp. 345–355 (1998)Google Scholar
  5. 5.
    Chandramouli, R., Memon, N.: Steganography capacity: A steganalysis perspective. To appear in SPIE Security and Watermarking of Multimedia Contents V, vol. 5020 (2003)Google Scholar
  6. 6.
    Fridrich, J., Goljan, M., Hogea, D., Soukal, D.: Quantitive steganalysis of digital images: Estimating the secret message lenght. ACM Multimedia Systems Journal, Special issue on Multimedia Security (2003)Google Scholar
  7. 7.
    Chandramouli, R., Memon, N.: Analysis of lsb image steganography techniques. In: IEEE Intnl. Conf. on Image Processing, vol. 3, pp. 1019–1022 (2001)Google Scholar
  8. 8.
    Chandramouli, R., Memon, N.: On sequential watermark detection. IEEE Transactions on Signal Processing 51(4), 1034–1044 (2003)CrossRefMathSciNetGoogle Scholar
  9. 9.
  10. 10.
  11. 11.
    Sharp, T.: Hide 2.1 (2001),
  12. 12.
    Westfeld, A., Pfitzmann, A.: Attacks on steganographic systems. In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 61–76. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Dumitrescu, S., Wu, X., Memon, N.: On steganalysis of random lsb embedding in continuous-tone images. In: IEEE International Conference on Image Processing, ROchester, New York (September 2002)Google Scholar
  14. 14.
    Fridrich, J., Goljan, M., Du, R.: Detecting lsb steganography in color and grayscale images. IEEE Multimedia Special Issue on Security, 22–28 (October-November 2001)Google Scholar
  15. 15.
    Fridrich, J., Du, R., Meng, L.: Steganalysis of lsb encoding in color images. In ICME 2000, New York, NY, USA (2000)Google Scholar
  16. 16.
    Westfeld, A.: Detecting low embedding rates. In: 5th International Workshop on Information Hiding, pp. 324–339 (2002)Google Scholar
  17. 17.
    Machado, R.: Ezstego (2001),
  18. 18.
  19. 19.
  20. 20.
    Johnson, N.F., Jajodia, S.: Steganalysis of images created using current steganography software. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 32–47. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Provos, N.: Defending against statistical steganalysis. In: 10th USENIX Security Symposium (2001)Google Scholar
  22. 22.
  23. 23.
    Westfeld, A.: F5—a steganographic algorithm: High capacity despite better steganalysis. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Avcibas, I., Memon, N., Sankur, B.: Steganalysis using image quality metrics. In: Security and Watermarking of Multimedia Contents, San Jose, Ca. (February 2001)Google Scholar
  25. 25.
    Avcibas, I., Memon, N., Sankur, B.: Image steganalysis with binary similarity measures. In: IEEE International Conference on Image Processing, ROchester, New York (September 2002) Google Scholar
  26. 26.
    Avcibas, I., Memon, N., Sankur, B.: Steganalysis using image quality metrics. IEEE transactions on Image Processing (January 2003)Google Scholar
  27. 27.
    Farid, H., Lyu, S.: Detecting hidden messages using higher-order statistics and support vector machines. In: 5th International Workshop on Information Hiding (2002)Google Scholar
  28. 28.
    Duda, R., Hart, P.: Pattern classification and scene analysis. John Wiley and Sons, Chichester (1973)MATHGoogle Scholar
  29. 29.
    Burges, C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rajarathnam Chandramouli
    • 1
  • Mehdi Kharrazi
    • 2
  • Nasir Memon
    • 3
  1. 1.Department of Electrical and Computer EngineeringStevens Institute of TechnologyHobokenUSA
  2. 2.Department of Electrical and Computer EngineeringPolytechnic UniversityBrooklynUSA
  3. 3.Department of Computer and Information SciencePolytechnic UniversityBrooklynUSA

Personalised recommendations