Symbolic Implementation of the Best Transformer

  • Thomas Reps
  • Mooly Sagiv
  • Greta Yorsh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2937)


This paper shows how to achieve, under certain conditions, abstract-interpretation algorithms that enjoy the best possible precision for a given abstraction. The key idea is a simple process of successive approximation that makes repeated calls to a decision procedure, and obtains the best abstract value for a set of concrete stores that are represented symbolically, using a logical formula.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stanford validity checker (1999),
  2. 2.
    Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of C programs. In: Prog. Lang. Design and Impl., ACM Press, New York (2001)Google Scholar
  3. 3.
    Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Clarke, E., Gupta, A., Kukula, J., Strichman, O.: SAT based abstraction-refinement using ILP and machine learning techniques. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 265. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Cousot, P., Cousot, R.: Abstract interpretation:A unified lattice model for static analysis of programs by construction of approximation of fixed points. In: Princ. of Prog. Lang. (1977)Google Scholar
  7. 7.
    Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Princ. of Prog. Lang., pp. 269–282. ACM Press, New York (1979)Google Scholar
  8. 8.
    Das, S., Dill, D.L., Park, S.: Experience with predicate abstraction. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 160–171. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Detlefs, D., Nelson, G., Saxe, J.: Simplify, Compaq Systems Research Center, Palo Alto, CA (1999)Google Scholar
  10. 10.
    Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, London (1972)MATHGoogle Scholar
  11. 11.
    Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Princ. of Prog. Lang., January 2002, pp. 58–70. ACM Press, New York (2002)Google Scholar
  13. 13.
    ILOG. ILOG optimization suite: White paper. ILOG S.A., Gentilly, France (2001)Google Scholar
  14. 14.
    Kildall, G.A.: A unified approach to global program optimization. In: Princ. of Prog. Lang., pp. 194–206. ACM Press, New York (1973)Google Scholar
  15. 15.
    Klarlund, N., Møller, A.: MONA Version 1.4 User Manual. BRICS Notes Series NS-01-1, Univ. of Aarhus (January 2001)Google Scholar
  16. 16.
    McCune, W.: MACE User Manual and Guide. Argonne Nat. Lab. (May 2001)Google Scholar
  17. 17.
    Mitchell, T.M.: Machine Learning. WCB/McGraw-Hill, Boston, MA (1997)MATHGoogle Scholar
  18. 18.
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (1999)MATHGoogle Scholar
  19. 19.
    Slaney, J.: Finder – Finite Domain Enumerator, Version 3.0. Aust. Nat. Univ. (July 1995)Google Scholar
  20. 20.
    Zhang, J., Zhang, H.: Generating models by SEM. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 308–312. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Thomas Reps
    • 1
  • Mooly Sagiv
    • 2
  • Greta Yorsh
    • 2
  1. 1.Comp. Sci. Dept.University of Wisconsin 
  2. 2.School of Comp. Sci.Tel-Aviv University 

Personalised recommendations