Advertisement

Tiling Rectangular Pictures with P Systems

  • Rodica Ceterchi
  • Radu Gramatovici
  • Nataša Jonoska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2933)

Abstract

We introduce a class of two-dimensional tiling languages which are distinct from the local and recognizable picture languages. These languages arise from tilings of the integer lattice Z 2. For such picture languages, we define a class of tissue-like P systems with active membranes as a generative device. We also make a comparison with the model introduced in [2,3] for the generation of local and recognizable two-dimensional languages, using a similar type of P systems.

Keywords

Cayley Graph Active Membrane Communication Graph Integer Lattice Division Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Béal, M.-P., Perrin, D.: Symbolic Dynamics and Finite Automata. In: Rozenberg, G., Salomaa, A. (eds.) Handboook of Formal Languages, vol. 3, pp. 463–506. Springer, Berlin (1997)Google Scholar
  2. 2.
    Ceterchi, R., Gramatovici, R., Jonoska, N., Subramanian, K.G.: Generating Picture Languages with P systems, Technical Report 26/03. In: Cavaliere, M., Martín-Vide, C., Păun, G. (eds.) Brainstorming Week on Membrane Computing, Rovira i Virgili University, Tarragona, pp. 85–100 (2003)Google Scholar
  3. 3.
    Ceterchi, R., Gramatovici, R., Jonoska, N., Subramanian, K.G.: Tissue-like P Systems for Picture Generation. Fundamenta Informaticae 56, 311–328 (2003)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Coven, E., Jonoska, N.: DNA Hybridization, Shifts of Finite Type, and Tiling of the Integers. In: Martín-Vide, C., Mitrana, V. (eds.) Grammars and Automata for String Processing, pp. 369–380. Taylor and Francis, London (2003)Google Scholar
  5. 5.
    Coven, E., Johnson, A., Jonoska, N., Madden, K.: The Symbolic Dynamics of Multidimensional Tiling Systems. Ergodic Theory and Dynamical Systems 23, 1–14 (2003)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Giammarresi, D., Restivo, A.: Recognizable Picture Languages. In: Nivat, M., Saoudi, A., Wang, P.S.P. (eds.) International Journal of Pattern Recognition and Artificial Inteligence, Special issue on Parallel Image Processing, pp. 31–46 (1992)Google Scholar
  7. 7.
    Giammarresi, D., Restivo, A.: Two-Dimensional Languages. In: Rozenberg, G., Salomaa, A. (eds.) Handboook of Formal Languages, vol. 3, pp. 215–267. Springer, Berlin (1997)Google Scholar
  8. 8.
    Giavitto, J.-L., Michel, O., Cohen, J.: Accretive Rules in Cayley P Systems, in Membrane Computing. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 319–338. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Kitchens, B., Schmidt, K.: Markov Subgroups of \((Z/2Z)^{Z^2}\). In: Walters, P. (ed.) Symbolic Dynamics and its Applications, Contemporary Mathematics, Providence, vol. 135, pp. 265–283 (1992)Google Scholar
  10. 10.
    Păun, A., Păun, G., Rozenberg, G.: Computing by Communication in Networks of Membranes. International Journal of Foundations of Computer Science 13, 779–798 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Păun, G.: P Systems with Active Membranes: Attacking NP-Complete Problems. Journal of Automata, Languages and Combinatorics 6, 75–90 (2001)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Păun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  13. 13.
    de Prophetís, L., Varricchio, S.: Recognizability of Rectangular Pictures by Wang Systems. Journal of Automata, Languages and Combinatorics 2, 269–288 (1997)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rodica Ceterchi
    • 1
  • Radu Gramatovici
    • 1
  • Nataša Jonoska
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  2. 2.Department of MathematicsUniversity of South FloridaTampaUSA

Personalised recommendations