Advertisement

P Systems and Petri Nets

  • Zhengwei Qi
  • Jinyuan You
  • Hongyan Mao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2933)

Abstract

We propose an intriguing relationship between P systems and Petri nets. For a basic model of P systems, this paper presents a new formalization based on place/transition nets, which can adopt one transition to implement the structural operational semantics of one evolving rule in P systems and utilize incidence matrix to analyze the computation of one macro-step. We also define the behavioral properties in P systems such as terminating, liveness, and boundedness based on this formalization. For a general class of P systems, we briefly describe a high-level framework called membrane Petri nets (MP-nets). MP-nets extend ordinary colored Petri nets (CPN) through introducing the dynamic features such as dissolve, divide, and move inspired by P systems. Therefore, MP-nets can be a graphical as well as an algebraic modelling tool for both generic P systems and dynamic CPN.

Keywords

Priority Relation Partial Order Relation Input Object Membrane Computing Parent Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asperti, A., Bussi, N.: Mobile Petri nets. Technical Report UBLCS-96-10, University of Bologna, Italy, 10–21 (1996)Google Scholar
  2. 2.
    Badouel, E., Oliver, J.: Reconfigurable nets: A class of high-level Petri nets supporting dynamic changes with workflow systems, INRIA Research Report, PI-1163 (1998)Google Scholar
  3. 3.
    Baranda, A.V., Arroyo, F., Castellanos, J., Gonzalo, R.: Towards an electronic implementation of membrane computing: A formal description of non-deterministic evolution in transition P systems. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, p. 350. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bălănescu, T., Gheorghe, M., Holcombe, M., Ipate, F.: Eilenberg P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 43–57. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Cavaliere, M.: Evolution-communication P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 134–145. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Ceterchi, R., Martín-Vide, C.: Dynamic P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 146–186. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Informatica 1, 115–138 (1971)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems. In: Proceeding of the Conference on Organizational Computing Systems. ACM Press, New York (1995)Google Scholar
  9. 9.
    Ghabri, M.-K., Ladet, P.: Dynamic Petri nets and their applications. In: Proceedings of the Fourth International Conference on Computer Integrated Manufacturing and Automation Technology, pp. 93–98 (1994)Google Scholar
  10. 10.
    Jensen, K.: Coloured Petri Nets. In: Basic Concepts, Analysis Methods and Practical Use. Basic Concepts. Springer, Heidelberg (1997); 2nd corrected printingGoogle Scholar
  11. 11.
    Madhu, M., Krithivasan, K.: A survey of some variants of P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 360–370. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Margenstern, M., Martin-Vide, C., Păun, Gh.: Computing with membranes; variants with an enhanced membrane handling. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, p. 340. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Martin-Vide, C., Păun, G., Rozenberg, G.: Membrane systems with carriers. Theoret. Comput. Sci. 270, 779–796 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Murata, T.: Petri nets: Properties, analysis and applications. Proc. of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  15. 15.
    Obtulowicz, A.: Probabilistic P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 377–387. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Păun, A., Păun, G.: The power of communication: P systems with symport/antiport. New Generation Computing 20(3), 295–306 (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Păun, G.: Computing with membranes. J. Comput. System Sci. 61(1), 108–143 (2000); see also Turku Center for Computer Science-TUCS Report No. 208 (1998), www.tucs.fi zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Păun, G., Rozenberg, G.: A guide to membrane computing. Theoret. Comput. Sci. 287, 73–100 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Perez-Jimenez, M.J., Sancho-Caparrini, F.: Verifying a P system generating squares. Romanian J. Inform. Sci. Tech. 5, 181–191 (2002)Google Scholar
  20. 20.
    Perez-Jimenez, M.J., Sancho-Caparrini, F.: A formalization of transition P systems. Fund. Inform. 49, 261–272 (2002)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Peterson, J.L.: Petri net Theory and the Modeling of Systems. Prentice-Hall, N.J. (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Zhengwei Qi
    • 1
  • Jinyuan You
    • 1
  • Hongyan Mao
    • 1
  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China

Personalised recommendations