Abstract
We introduce an energy model whose minimum energy drawings reveal the clusters of the drawn graph. Here a cluster is a set of nodes with many internal edges and few edges to nodes outside the set. The drawings of the best-known force and energy models do not clearly show clusters for graphs whose diameter is small relative to the number of nodes. We formally characterize the minimum energy drawings of our energy model. This characterization shows in what sense the drawings separate clusters, and how the distance of separated clusters to the other nodes can be interpreted.
Keywords
- Central Cluster
- Connected Graph
- Energy Model
- Visual Graph
- Internal Edge
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Chapter PDF
References
Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74(1), 47–97 (2002)
Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning: A survey. Integration, the VLSI Journal 19(1-2), 1–81 (1995)
Aumann, Y., Rabani, Y.: An O(log k) approximate min-cut max-flow theorem and approximation algorithm. SIAM Journal on Computing 27(1), 291–301 (1998)
Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)
Blythe, J., McGrath, C., Krackhardt, D.: The effect of graph layout on inference from social network data. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 40–51. Springer, Heidelberg (1996)
Brandenburg, F.-J., Himsolt, M., Rohrer, C.: An experimental comparison of force-directed and randomized graph drawing algorithms. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 76–87. Springer, Heidelberg (1996)
Brandes, U.: Drawing on physical analogies. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 71–86. Springer, Heidelberg (2001)
Brandes, U., Cornelsen, S.: Visual ranking of link structures. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 222–233. Springer, Heidelberg (2001)
Brockenauer, R., Cornelsen, S.: Drawing clusters and hierarchies. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, p. 193. Springer, Heidelberg (2001)
Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM Transactions on Graphics 15(4), 301–331 (1996)
Dengler, E., Cowan, W.: Human perception of laid-out graphs. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 441–443. Springer, Heidelberg (1999)
Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)
Eades, P., Huang, M.L.: Navigating clustered graphs using force-directed methods. Journal of Graph Algorithms and Applications 4(3), 157–181 (2000)
Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Software – Practice and Experience 21(11), 1129–1164 (1991)
Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to force-directed layouts of large graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 211–221. Springer, Heidelberg (2001)
Hall, K.M.: An r-dimensional quadratic placement algorithm. Management Science 17(3), 219–229 (1970)
Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 183–196. Springer, Heidelberg (2001)
Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information Processing Letters 31(1), 7–15 (1989)
Koren, Y., Carmel, L., Harel, D.: Ace: A fast multiscale eigenvector computation for drawing huge graphs. In: Proc. IEEE Symposium on Information Visualization (InfoVis 2002), pp. 137–144 (2002)
Kruskal, J.B., Wish, M.: Multidimensional Scaling. Sage Publications, Thousand Oaks (1978)
Lewerentz, C., Noack, A.: CrocoCosmos – 3D visualization of large object-oriented programs. In: Graph Drawing Software, pp. 279–297. Springer, Heidelberg (2003)
Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)
Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y., Gansner, E.R.: Using automatic clustering to produce high-level system organizations of source code. In: Proc. 6th IEEE International Workshop on Program Understanding (IWPC 1998), pp. 45–52 (1998)
Noack, A.: Energy models for drawing clustered small-world graphs. Technical Report 07/03, Institute of Computer Science, Brandenburg University of Technology at Cottbus (2003)
Pothen, A.: Graph partitioning algorithms with applications to scientific computing. In: Keyes, D.E., Sameh, A., Venkatakrishnan, V. (eds.) Parallel Numerical Algorithms, pp. 323–368. Kluwer, Dordrecht (1997)
Quigley, A.J., Eades, P.: FADE: Graph drawing, clustering, and visual abstraction. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 197–210. Springer, Heidelberg (2001)
Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)
Tunkelang, D.: A Numerical Optimization Approach to General Graph Drawing. PhD thesis, School of Computer Science, Carnegie Mellon University (1999)
Walshaw, C.: A multilevel algorithm for force-directed graph drawing. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 171–182. Springer, Heidelberg (2001)
Wang, X., Miyamoto, I.: Generating customized layouts. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 504–515. Springer, Heidelberg (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Noack, A. (2004). An Energy Model for Visual Graph Clustering. In: Liotta, G. (eds) Graph Drawing. GD 2003. Lecture Notes in Computer Science, vol 2912. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24595-7_40
Download citation
DOI: https://doi.org/10.1007/978-3-540-24595-7_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20831-0
Online ISBN: 978-3-540-24595-7
eBook Packages: Springer Book Archive