Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

International Symposium on Graph Drawing

GD 2003: Graph Drawing pp 425–436Cite as

  1. Home
  2. Graph Drawing
  3. Conference paper
An Energy Model for Visual Graph Clustering

An Energy Model for Visual Graph Clustering

  • Andreas Noack5 
  • Conference paper
  • 2003 Accesses

  • 45 Citations

Part of the Lecture Notes in Computer Science book series (LNCS,volume 2912)

Abstract

We introduce an energy model whose minimum energy drawings reveal the clusters of the drawn graph. Here a cluster is a set of nodes with many internal edges and few edges to nodes outside the set. The drawings of the best-known force and energy models do not clearly show clusters for graphs whose diameter is small relative to the number of nodes. We formally characterize the minimum energy drawings of our energy model. This characterization shows in what sense the drawings separate clusters, and how the distance of separated clusters to the other nodes can be interpreted.

Keywords

  • Central Cluster
  • Connected Graph
  • Energy Model
  • Visual Graph
  • Internal Edge

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74(1), 47–97 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning: A survey. Integration, the VLSI Journal 19(1-2), 1–81 (1995)

    CrossRef  MATH  Google Scholar 

  3. Aumann, Y., Rabani, Y.: An O(log k) approximate min-cut max-flow theorem and approximation algorithm. SIAM Journal on Computing 27(1), 291–301 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  5. Blythe, J., McGrath, C., Krackhardt, D.: The effect of graph layout on inference from social network data. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 40–51. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

  6. Brandenburg, F.-J., Himsolt, M., Rohrer, C.: An experimental comparison of force-directed and randomized graph drawing algorithms. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 76–87. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

  7. Brandes, U.: Drawing on physical analogies. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 71–86. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  8. Brandes, U., Cornelsen, S.: Visual ranking of link structures. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 222–233. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  9. Brockenauer, R., Cornelsen, S.: Drawing clusters and hierarchies. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, p. 193. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  10. Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM Transactions on Graphics 15(4), 301–331 (1996)

    CrossRef  Google Scholar 

  11. Dengler, E., Cowan, W.: Human perception of laid-out graphs. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 441–443. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  12. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)

    MathSciNet  Google Scholar 

  13. Eades, P., Huang, M.L.: Navigating clustered graphs using force-directed methods. Journal of Graph Algorithms and Applications 4(3), 157–181 (2000)

    MATH  Google Scholar 

  14. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Software – Practice and Experience 21(11), 1129–1164 (1991)

    CrossRef  Google Scholar 

  15. Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to force-directed layouts of large graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 211–221. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  16. Hall, K.M.: An r-dimensional quadratic placement algorithm. Management Science 17(3), 219–229 (1970)

    CrossRef  MATH  Google Scholar 

  17. Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 183–196. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  18. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information Processing Letters 31(1), 7–15 (1989)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Koren, Y., Carmel, L., Harel, D.: Ace: A fast multiscale eigenvector computation for drawing huge graphs. In: Proc. IEEE Symposium on Information Visualization (InfoVis 2002), pp. 137–144 (2002)

    Google Scholar 

  20. Kruskal, J.B., Wish, M.: Multidimensional Scaling. Sage Publications, Thousand Oaks (1978)

    Google Scholar 

  21. Lewerentz, C., Noack, A.: CrocoCosmos – 3D visualization of large object-oriented programs. In: Graph Drawing Software, pp. 279–297. Springer, Heidelberg (2003)

    Google Scholar 

  22. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  23. Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y., Gansner, E.R.: Using automatic clustering to produce high-level system organizations of source code. In: Proc. 6th IEEE International Workshop on Program Understanding (IWPC 1998), pp. 45–52 (1998)

    Google Scholar 

  24. Noack, A.: Energy models for drawing clustered small-world graphs. Technical Report 07/03, Institute of Computer Science, Brandenburg University of Technology at Cottbus (2003)

    Google Scholar 

  25. Pothen, A.: Graph partitioning algorithms with applications to scientific computing. In: Keyes, D.E., Sameh, A., Venkatakrishnan, V. (eds.) Parallel Numerical Algorithms, pp. 323–368. Kluwer, Dordrecht (1997)

    Google Scholar 

  26. Quigley, A.J., Eades, P.: FADE: Graph drawing, clustering, and visual abstraction. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 197–210. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  27. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    CrossRef  Google Scholar 

  28. Tunkelang, D.: A Numerical Optimization Approach to General Graph Drawing. PhD thesis, School of Computer Science, Carnegie Mellon University (1999)

    Google Scholar 

  29. Walshaw, C.: A multilevel algorithm for force-directed graph drawing. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 171–182. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  30. Wang, X., Miyamoto, I.: Generating customized layouts. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 504–515. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Computer Science Brandenburg, Technical University at Cottbus, PO Box 10 13 44, 03013, Cottbus, Germany

    Andreas Noack

Authors
  1. Andreas Noack
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Dip. di Ingegneria Elettronica e dell’Informazione, Università degli Studi di Perugia,  

    Giuseppe Liotta

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Noack, A. (2004). An Energy Model for Visual Graph Clustering. In: Liotta, G. (eds) Graph Drawing. GD 2003. Lecture Notes in Computer Science, vol 2912. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24595-7_40

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-24595-7_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20831-0

  • Online ISBN: 978-3-540-24595-7

  • eBook Packages: Springer Book Archive

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

3.80.4.147

Not affiliated

Springer Nature

© 2023 Springer Nature