Skip to main content

Computational Complexity Measures of Multipartite Quantum Entanglement

(Extented Abstract)

  • Conference paper
  • 1198 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2906))

Abstract

We shed new light on entanglement measures in multipartite quantum systems by taking a computational-complexity approach toward quantifying quantum entanglement with two familiar notions—approximability and distinguishability. Built upon the formal treatment of partial separability, we measure the complexity of an entangled quantum state by determining (i) how hard to approximate it from a fixed classical state and (ii) how hard to distinguish it from all partially separable states. We further consider the Kolmogorovian-style descriptive complexity of approximation and distinction of partial entanglement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26, 1411–1473 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berthiaume, A., van Dam, W., Laplante, S.: Quantum Kolmogorov complexity. J. Comput. System Sci. See also ArXive e-print quant-ph/0005018 (2000) (to appear)

    Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one and two-particle operationson Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    Article  Google Scholar 

  6. Deutsch, D.: Quantum computational networks. Proc. Roy. Soc. London A 425, 73–90 (1989)

    MathSciNet  Google Scholar 

  7. Fuchs, C.A., van de Graaf, J.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Transactions on Information Theory 45, 1216–1227 (1999)

    Article  MATH  Google Scholar 

  8. Horodecki, M.: Entanglement measures. Quant. Info. Comp. 1, 3–26 (2001)

    MATH  MathSciNet  Google Scholar 

  9. Knill, E.: Approximating quantum circuits. ArXive e-print quant-ph/9508006 (1995)

    Google Scholar 

  10. Kobayashi, H., Matsumoto, K., Yamakami, T.: Quantum Merlin-Arthur proof systems: are multiple Merlins more helpful to Arthur? In: This Proceedings

    Google Scholar 

  11. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  12. Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings of the 15th ACM Symposium on the Theory of Computing, pp. 330–335 (1983)

    Google Scholar 

  13. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275–2279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Vedral, V., Plenio, M.B., Jacob, K., Knight, P.L.: Statistical inference, distinguishability of quantum states, and quantum entanglement. Phys. Rev. A 56, 4452–4455 (1997)

    Google Scholar 

  15. Vitányi, P.M.B.: Quantum Kolmogorov complexity based on classical descriptions. IEEE Transactions on Information Theory 47, 2464–2479 (2001)

    Article  MATH  Google Scholar 

  16. Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite quantum states. ArXive e-print quant-ph/0307219 (2003)

    Google Scholar 

  17. Yamakami, T.: A foundation of programming a multi-tape quantum Turing machine. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 430–441. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Yamakami, T.: Quantum NP and a quantum hierarchy. In: Proceedings of the 2nd IFIP Conference on Theoretical Computer Science (Foundations of Information Technology in the Era of Network and Mobile Computing), pp. 323–336. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  19. Yao, A.C.: Quantum circuit complexity. In: Proceedings of the 34th Annual Symposium on Foundations of Computer Science, pp.352–361 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamakami, T. (2003). Computational Complexity Measures of Multipartite Quantum Entanglement. In: Ibaraki, T., Katoh, N., Ono, H. (eds) Algorithms and Computation. ISAAC 2003. Lecture Notes in Computer Science, vol 2906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24587-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24587-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20695-8

  • Online ISBN: 978-3-540-24587-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics