Advertisement

Geomorphometric Analysis of Raster Image Data to detect Terrain Ruggedness and Drainage Density

  • Marco Moreno
  • Serguei Levachkine
  • Miguel Torres
  • Rolando Quintero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2905)

Abstract

We present an approach to identify some geomorphometrical characteristics of raster geo-images. The identification involves the generation of raster layers, topographic ruggedness and drainage density. The topographic ruggedness is used to express the amount of elevation difference between adjacent cells of Digital Elevation Model (DEM). The topographic ruggedness is presented by means of Terrain Ruggedness Index (TRI). The densities layers are obtained by Spline Interpolation Method. These layers are used to represent the amount of geographic linear objects. The algorithm has been implemented into Geographical Information System (GIS) – ArcInfo, and applied for a GIS of Tamaulipas State, Mexico.

References

  1. 1.
    Bonk, R.: Scale-dependent Geomorphometric Analysis for Glacier Mapping at Nanga Parbat: GRASS GIS Approach. In: Proceedings of the Open source GIS – GRASS User’s conference 2002, Italy (2002)Google Scholar
  2. 2.
    Goodchild, M.: Perspective: Browsing metadata, where do we go from here? Geo Info Systems 10, 30–31 (2000)Google Scholar
  3. 3.
    Wharton, G.: Progress in the use of drainage network indices for rainfall-runoff modelling and runoff prediction. Progress in Physical Geography 18, 539–557 (1994)CrossRefGoogle Scholar
  4. 4.
    Desmet, P.J.J., Govers, G.: Comparison of routing algorithms for digital elevation models and their implications for predicting ephemeral gullies. International Journal of Geographical Information Systems 10, 311–331 (1996)Google Scholar
  5. 5.
    Wiche, G.J., Jenson, S.K., Baglio, J.V., Dominguez, J.O.: Application of digital elevation models to delineate drainage areas and compute hydrologic characteristics for sites in the James River Basin, North Dakota, U.S. Geological Survey Water-Supply Paper, Vol. 23 (1992)Google Scholar
  6. 6.
    Garrote, L., Bras, R.L.: A distributed model for real-time flood forecasting using digital elevation models. Journal of Hydrology 167, 279–306 (1995)CrossRefGoogle Scholar
  7. 7.
    Instituto Nacional de Geografía Estadística e Informática (INEGI): Modelos Digitales de Elevación – Generalidades y Especificaciones, INEGI (1999)Google Scholar
  8. 8.
    Torres, M., Moreno, M., Menchaca, R., Levachkine, S.: Making Spatial Analysis with a Distributed Geographical Information System. In: International Conference on Databases and Applications (DBA 2003), International Association of Science and Technology for Development. Series on APPLIED INFORMATICS – AI 2003, pp. 1245–1250 (2003)Google Scholar
  9. 9.
    Mitas, L., Mitasova, H.: General Variational Approach to the Interpolation Problem. Journal of Computers and Mathematics with Applications 16, 983–992 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Molenaar, M.: An Introduction to the theory of spatial object modelling for GIS. Taylor & Francis, U.K. (1998)Google Scholar
  11. 11.
    Torres, M., Moreno, M., Levachkine, S.: SIGETAM: Herramienta GIS de Escritorio enfocada a la Detección de Zonas de Riesgo de Deslave e Inundación. In: 1st International Congress of Informatics and Computing, Guadalajara, México, pp. 156–168 (2002)Google Scholar
  12. 12.
    Riley, S.J., DeGloria, S.D., Elliot, R.: A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences 5, 23–27 (1999)Google Scholar
  13. 13.
    Horton, R.E.: Drainage basin characteristics. Transactions American Geophysical Union 13, 350–361 (1932)Google Scholar
  14. 14.
    Tarboton, D., Ames, D.: Advances in the mapping of flow networks from digital elevation data, World Water and Environmental Resources Congress, Florida (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Marco Moreno
    • 1
  • Serguei Levachkine
    • 1
  • Miguel Torres
    • 1
  • Rolando Quintero
    • 1
  1. 1.Geoprocessing Laboratory-Centre for Computing Research-National Polytechnic InstituteMexico CityMexico

Personalised recommendations