Off the Shelf Methods for Robust Portuguese Cadastral Map Analysis

  • T. Candeias
  • F. Tomaz
  • H. Shahbazkia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2905)

Abstract

A document analysis prototype and its application to the automatic Portuguese cadastral map digitalisation is discussed in this paper. Tuning off the shelf methods and sometimes their extension has permitted to obtain applicable results. These algorithms and their tunings as well as the results obtained are given in the paper. The prototype has been approved for further development to an integrated system to be used by some Portuguese entities.

Keywords

Cadastral Information System Map Analysis Image Processing 

References

  1. 1.
    Shahbazkia, H.: Reconnaissance invariante et acquisition de connaissance: application au traitement automatique des plans de cadastre français. PhD thesis, Université Louis Pasteur de Strasbourg (1998)Google Scholar
  2. 2.
    Wenyin, L., Dori, D.: A proposed scheme for performance evaluation of graphics/text separation algorithms. In: Chhabra, A.K., Tombre, K. (eds.) GREC 1997. LNCS, vol. 1389, pp. 359–371. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Tomber, K., Ah-Soon, C., Dosch, P., Habed, A., Masini, G.: Stable, Robust and Off-the-Shelf Methods for Graphics Recognition. In: Proceedings of the 14th International Conference on Pattern Recognition, Brisbane (Australia), pp. 406–408 (1998)Google Scholar
  4. 4.
    Duda, R., Hart, P.: Use of the hough transform to detect lines and curves in pictures. Communications of the ACM 15, 11–15 (1972)CrossRefGoogle Scholar
  5. 5.
    Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition 13, 111–122 (1981)MATHCrossRefGoogle Scholar
  6. 6.
    Matas, J., Galambos, C., Kittler, J.: Progressive probabilistic hough transform. Technical report, University of Surrey/Czech Technical University (1998)Google Scholar
  7. 7.
    Kilian, J.: Simple image analysis by moments. Technical report, Freely distributable, version 0.2 (2001)Google Scholar
  8. 8.
    Trier, O., Jain, A., Taxt, T.: Feature extraction methods for character recognition – a survey (1996)Google Scholar
  9. 9.
    Dimauro, G., Impedovo, S., Pirlo, G., Salzo, A.: Zoning design for handwritten numeral recognition. In: Del Bimbo, A. (ed.) ICIAP 1997. LNCS, vol. 1311, pp. 592–599. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Tombre, K., Tabbone, S.: Vectorization in graphics recognition: To thin or not to thin. In: Proceedings of 15th International Conference on Pattern Recognition, Barcelona (Spain), September 2000, vol. 2, pp. 91–96 (2000)Google Scholar
  11. 11.
    Jennings, C.: Computer vision for line drawings. Msc Thesis (1993)Google Scholar
  12. 12.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. In: Proc. of IEEE Conference on Computer Vision, London, England, pp. 259–268 (1987)Google Scholar
  13. 13.
    Tombre, K., Ah-Soon, C., et al.: Stable and robust vectorization:Howtomake the right choices. In: Proceedings of Third IAPR InternationalWorkshop on Graphics Recognition, Jaipur, India, September 1999, pp. 3–16 (1999)Google Scholar
  14. 14.
    Eikvil, L., Aas, K., Koren, H.: Tools for interactive map conversion and vectorization. In: International Conference on Document Analysis and Recognition, August 14-16, vol. 2 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • T. Candeias
    • 1
  • F. Tomaz
    • 1
  • H. Shahbazkia
    • 1
  1. 1.Universidade do Algarve – FCTBIF laboratoryFaroPortugal

Personalised recommendations