A Characterization of Discretized Polygonal Convex Regions by Discrete Moments

  • Joviša Žunić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2905)


For a given planar region P its discretization on a discrete planar point set \(\mathcal{S}\) consists of the points from \(\mathcal{S}\) which fall into P. If P is bounded with a convex polygon having n vertices and the number of points from \(P \cap \mathcal{S}\) is finite, the obtained discretization of P will be called discrete convexn-gon.

In this paper we show that discrete moments having the order up to n characterize uniquely the corresponding discrete convex n-gon if the discretizing set \(\mathcal{S}\) is fixed. In this way, as an example, the matching of discrete convex n-gons can be done by comparing \(\frac{1}{2} \cdot (n + 1) \cdot (n + 2)\) discrete moments what can be much efficient than the comparison “point-by-point” since a digital convex n-gon can consist of an arbitrary large number of points.


Discrete shape coding moments pattern matching 


  1. 1.
    Dorst, L., Smeulders, A.W.M.: Discrete representation of straight lines. IEEE Trans. Pattern Anal. Machine Intell. 6, 450–463 (1984)zbMATHCrossRefGoogle Scholar
  2. 2.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)zbMATHGoogle Scholar
  3. 3.
    Forchhammer, S., Kim, C.E.: Digital squares. IEEE Trans. Pattern Anal. Machine Intell. 22, 672–674 (1988)Google Scholar
  4. 4.
    Hu, M.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8, 179–187 (1962)Google Scholar
  5. 5.
    Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, New York (1995)Google Scholar
  6. 6.
    Lindenbaum, M., Bruckstein, A.: On recursive, \(\mathcal{O}(N)\) partitioning of a digitized curve into digital straight segments. IEEE Trans. Pattern Anal. Machine Intell. 15, 949–953 (1993)CrossRefGoogle Scholar
  7. 7.
    Lindenbaum, M., Koplowitz, J.: A new parametrization of digital straight lines. IEEE Trans. Pattern Anal. Machine Intell. 13, 847–852 (1991)CrossRefGoogle Scholar
  8. 8.
    Mamistvalov, A.G.: n-Dimensional moment invariants and conceptual mathematical theory of recognition n-dimensional solids. IEEE Trans. Pattern Anal. Machine Intell. 20, 819–831 (1998)CrossRefGoogle Scholar
  9. 9.
    Nakamura, A., Aizawa, K.: Digital squares. Computer Vision, Graphics Image Processing 49, 357–368 (1990)CrossRefGoogle Scholar
  10. 10.
    Smeulders, A.W.M., Dorst, L.: Decomposition of discrete curves into piecewise straight segments in linear time. In: Bhattacharya, P., Rosenfeld, A. (eds.) Vision Geometry, American Mathematical Society. series Contemporary Mathematics, vol. 119, pp. 169–195 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Joviša Žunić
    • 1
  1. 1.Computer ScienceCardiff UniversityCardiff, WalesU.K.

Personalised recommendations