Solving the Global Localization Problem for Indoor Mobile Robots

  • Leonardo Romero
  • Eduardo Morales
  • Enrique Sucar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2905)


Global localization is the problem of determining the position of a robot under global uncertainty. This problem can be divided in two phases: 1) from the sensor data (or sensor view), determine clusters of hypotheses where the robot can be; and 2) devise a strategy by which the robot can correctly eliminate all but the right location. In the second phase, previous approaches consider an ideal robot, a robot with a perfect odometer, to predict robot movements. This paper introduces a non deterministic prediction approach based on a Markov localization that include an uncertainty model for the movements of the robot. The non deterministic model can help to solve situations where a deterministic or ideal model fails. Hypotheses are clustered and a greedy search algorithm determines the robot movements to reduce the number of clusters of hypotheses. This approach is tested using a simulated mobile robot with promising results.


Mobile Robot Robot Movement Global Localization Goal Cell Sensor View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Borenstein, J., Everett, B., Feng, L.: Navigating Mobile Robots: Systems and Techniques. A.K. Peter, Ltd., Wellesley, MA (1996)zbMATHGoogle Scholar
  2. 2.
    Castellanos, J.A., Tardos, J.D.: Mobile robot localization and map building: a multisensor fusion approach. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  3. 3.
    Cheeseman, P., Stutz, J.: Bayesian classification (autoclass): Theory and results. In: Fayyad, U.-M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, AAAI Press/MIT Press (1996)Google Scholar
  4. 4.
    Dudek, G., Romanik, K., Whitesides, S.: Localizing a robot with minimum travel. SIAM J. Comput 27(2), 583–604 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Fox, D., Burgard, W.: Active markov localization for mobile robots. Robotics and Autonomous Systems (1998)Google Scholar
  6. 6.
    Guibas, L., Motwani, R., Raghavan, P.: The robot localization problem. In: Goldberg, K., Halperin, D., Latombe, J.C. (eds.) Algorithmic Foundations of Robotics, A. K. Peters (1995)Google Scholar
  7. 7.
    Gutmann, J.-S., Burgard, W., Fox, D., Konolige, K.: An experimental comparison of localization methods. In: Proc. International Conference on Intelligent Robots and Systems, IROS 1998 (1998)Google Scholar
  8. 8.
    Kaelbling, L.P., Cassandra, A.R., Kurien, J.A.: Acting under uncertainty: Discrete Bayesian models for mobile-robot navigation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (1996)Google Scholar
  9. 9.
    Romero, L., Morales, E., Sucar, E.: A robust exploration and navigation approach for indoor mobile robots merging local and global strategies. In: Monard, M.C., Sichman, J.S. (eds.) SBIA 2000 and IBERAMIA 2000. LNCS (LNAI), vol. 1952, p. 389. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Romero, L., Morales, E., Sucar, E.: A hybrid approach to solve the global localization problem for indoor mobile robots considering sensor’s perceptual limitations. In: Proc. International Joint Conference on Artificial Intelligence (IJCAI), Seatle, WA (2001)Google Scholar
  11. 11.
    Simmons, R., Koenig, S.: Probabilistic robot navigation in partially observable environments. In: Proc. International Joint Conference on Artificial Intelligence (1995)Google Scholar
  12. 12.
    Thrun, S.: Learning maps for indoor mobile robot navigation. Artificial Intelligence 99(1), 21–71 (1998)zbMATHCrossRefGoogle Scholar
  13. 13.
    Thrun, S., Bucken, A., Burgar, W., et al.: Map learning and high-speed navigation in rhino. In: Kortenkamp, D., Bonasso, R.P., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots, AAAI Press/The MIT Press (1998)Google Scholar
  14. 14.
    Weib, G., Wetzler, C., Puttkamer, E.: Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans. Intelligent Robots and Systems (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Leonardo Romero
    • 1
  • Eduardo Morales
    • 2
  • Enrique Sucar
    • 2
  1. 1.UMSNHMoreliaMexico
  2. 2.ITESMMexico

Personalised recommendations