Advertisement

Automatic Dark Fibres Detection in Wool Tops

  • Juan Bazerque
  • Julio Ciambelli
  • Santiago Lafon
  • Gregory Randall
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2905)

Abstract

Is proposed a method for the automatic detection of dark fibres in wool tops based on image processing. A software which implements this method was developed, composed by five modules: KL projection, light correction, Gabor filtering, segmentation and morphology. The digital image are taken by a camera placed in a balanced illumination system. The method was calibrated and tested on 170 images marked by experts from Secretariado Uruguayo de la Lana.

Keywords

Dark Fibres Detection Wool Industry Balanced Illumination Light Correction Gabor Filtering 

References

  1. 1.
    Kremer, R.: Personal communication Facultad de Veterinaria, Universidad de la RepúblicaGoogle Scholar
  2. 2.
    Foulds, R.A., Wong, P., Andrews, M.W.: Dark fibres and their economic importance. Wool technology and Sheep Breeding XXXII(11), 91–100Google Scholar
  3. 3.
    Wool Contamination: Detection of dark fibre contamination on Merino wool Fact_sheet_018, Queensland Department of Primary Industries; Queensland, Australia (July 2001)Google Scholar
  4. 4.
    IWTO(E)-13-88 Counting of Coloured Fibres in Tops by the Balanced Illumination Method. International Wool Textile Organization, London, U.KGoogle Scholar
  5. 5.
    González, R.C., Woods, R.E.: Tratamiento Digital de Imágenes. Addison-Wesley, Reading (1992)Google Scholar
  6. 6.
    Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, London (1998)zbMATHGoogle Scholar
  7. 7.
    Kumar, A., Pang, G.K.H.: Defect Detection in Textured Materials Using Gabor Filters. IEEE Transactions on Industry Applications 38(2) (March/April 2002)Google Scholar
  8. 8.
    Kittler, J.: Pattern Recognition. University of Surrey, Spring semester (1999)Google Scholar
  9. 9.
    DeHoff, R.: The Essential Guide to Digital Video Capture, Imagenation CorporationGoogle Scholar
  10. 10.
    West, P.: A Roadmap for Building a Machine Vision System, Automated Vision Systems, Inc.Google Scholar
  11. 11.
    Delfosse, P., Galère, H., Grignet, J., Lemaire, P., Lkèonard, J., Longrèe, M., Muller, J., Paquet, V.: Maesurement of Cleanliness in Combed Wool by Artificial Vision and Image. In: Processing The 9th International Wool Textile Reserch Conference, June/July 1995, vol. 4, pp. 97–105 (1995)Google Scholar
  12. 12.
    Russ, J.C.: The Image Processing Handbook, 2nd edn. CRC Press, Boca Raton (1994)Google Scholar
  13. 13.
    Coster, M., Chermant, J.L.: Precis d’Analyse d’Images Presses Du CNRS (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Juan Bazerque
    • 1
  • Julio Ciambelli
    • 1
  • Santiago Lafon
    • 1
  • Gregory Randall
    • 1
  1. 1.Instituto de Ingeniería Eléctrica, Facultad de IngenieríaUniversidad de la República 

Personalised recommendations