A Study on the Recognition of Patterns of Infant Cry for the Identification of Deafness in Just Born Babies with Neural Networks

  • José Orozco-García
  • Carlos A. Reyes-García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2905)


In this paper we present the methodologies and experiments followed for the implementation of a system used for the automatic recognition and classification of patterns of infant cry. We show the different stages through which the system is trained to identify normal and hypo acoustic (deaf) cry. The cry patterns are represented by acoustic features obtained by the Mel-Frequency Cepstrum and Lineal Prediction Coding techniques. For the classification we used a feed-forward neural network. Results from the different methodologies and experiments are shown, as well as the best results obtained up to the moment, which are up to 96.9% of accuracy.


  1. 1.
    Bosma, J.F., Truby, H.M., Antolop, W.: Cry Motions of the Newborn Infant. Acta Paediatrica Scandinavica (Suppl.) 163, 61–92 (1965)Google Scholar
  2. 2.
    Cano, S.D., Escobedo y Eddy Coello, D.I.: El Uso de los Mapas Auto- Organizados de Kohonen en la Clasificación de Unidades de Llanto Infantil. Grupo de Procesamiento de Voz, 1er Taller AIRENE, Universidad Catolica del Norte, Chile, pp. 24–29 (1999)Google Scholar
  3. 3.
    Petroni, M., Malowany, A.S., Johnston, C.C., Stevens, B.J.: Identification of pain from infant cry vocalizations using artificial neural networks (ANNs). In: The International Society for Optical Engineering. Part two of two. Paper #: 2492-79, vol. 2492, pp. 729–738 (1995)Google Scholar
  4. 4.
    Wasz-Hockert, O., Lind, J., Vuorenkoski, V., Partanen, T., Valanne, E: El Llanto en el Lactante y su Significación Diagnóstica, Cientifico-Medica, Barcelona (1970)Google Scholar
  5. 5.
    Ekkel, T.: Neural Network-Based Classification of Cries from Infants Suffering from Hypoxia-Related CNS Damage. Master Thesis. University of Twente, The Netherlands (2002)Google Scholar
  6. 6.
    Huang, X., Acero, A., Hon, H.: Spoken Language Processing: A Guide to Theory, Algorithm, and System Development. Prentice-Hall, Inc., USA (2001)Google Scholar
  7. 7.
    Markel, J.D., Gray, A.H.: Linear prediction of speech. Springer, New York (1976)zbMATHGoogle Scholar
  8. 8.
    Fu, L.: Neural Networks in Computer Intelligence. McGraw-Hill Inc., New York (1994)Google Scholar
  9. 9.
    Moller: A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Networks 6(4), 525–533 (1993)CrossRefGoogle Scholar
  10. 10.
    Haykin, S.S.: Neural Networks: A Comprehensive Foundation. Macmillan College Publishing Company, Inc., New York (1994)zbMATHGoogle Scholar
  11. 11.
    Boersma, P., Weenink, D.: Praat v. 4.0.8. A system for doing phonetics by computer. Institute of Phonetic Sciences of the University of Amsterdam (February 2002)Google Scholar
  12. 12.
    Manual Neural Network Toolbox, Matlab V.6.0.8, Development by MathWoks, Inc.Google Scholar
  13. 13.
    Orozco-García, J., Reyes-Garcia, C.A.: Acoustic Features Analysis for Recognition of Normal and Hypoacoustic Infant Cry Based on Neural Networks. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687, pp. 615–622. Springer, Heidelberg (2003) ISBN 3-540-40211, ISSN 0302-9743CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • José Orozco-García
    • 1
  • Carlos A. Reyes-García
    • 1
  1. 1.Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE)Tonantzintla, PueblaMéxico

Personalised recommendations