Characterization of Viability of Seeds by Using Dynamic Speckles and Difference Histograms

  • Margarita Fernández
  • Adriana Mavilio
  • Héctor Rabal
  • Marcelo Trivi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2905)


We propose the use of Difference Histogram method for classification of soya seed speckle images. The time history speckle patterns (THSP), obtained from the dynamic speckle patterns of the seeds were processed for texture classification based on seed vigor and viability. In this work, bean seeds were analyzed with different humidity levels, ie. at 15, 25, 35 and 45 minutes since the sample was taken out from the humid germination paper and submitted to the imaging process, with the aim of determining the influence of this temporal parameter in the classification result (dead or alive). The whole set of seeds was previously analyzed and classified in viable (alive) or not viable (dead) by experts in the matter by applying a traditional method. According to the obtained results the proposed method revealed to be appropriate for the task of classification of seeds. In the case of the highest humidity level the disagreement between our method and the conventional one was the greatest. It should be said that in this case the analyzed images were noisier.


Speckle Pattern Texture Classification Humidity Level Discrimination Threshold Bean Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dainty, J.C. (ed.): Laser speckle and related phenomena. Springer, Berlin (1975)Google Scholar
  2. 2.
    Braga, R., et al.: Proc. SPIE 4419, Tandil, Argentina, pp. 34–37 (2001)Google Scholar
  3. 3.
    Fernández, M., Mavilio, A., Rabal, H., Trivi, M.: Proc. SPIE 4419, Tandil, Argentina, pp. 178–181 (2001)Google Scholar
  4. 4.
    Oulamara, G., et al.: Journal of Modern Optics 36, 165–179 (1989)CrossRefGoogle Scholar
  5. 5.
    Haralick, R.M.: Proc. IEEE 67(5), 786 (1979)CrossRefGoogle Scholar
  6. 6.
    Haralick, R.M.: IEEE Trans. Syst., Man, Cybern. SMC-3(6), 610 (1973)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Unser, M.: IEEE Trans. Pattern Anal. Mach. Intell. 8(1), 118 (1986)CrossRefGoogle Scholar
  8. 8.
    Tejera, M., Mavilio, A., Fernández, M.: Dimensiones Promediadas como descriptores de la textura. Mem. Foro Iberoam. Trat. Dig. Imag, Valencia, España (October 1996)Google Scholar
  9. 9.
    Weldon, T.P., Higgins, W.E.: Proc. ICIP 1994, Austin, Texas, vol. T-II, p. 620 (1994)Google Scholar
  10. 10.
    Palisson, P.: Proc. ICIP 1994, Austin, Texas, vol. T-II, p. 625 (1994)Google Scholar
  11. 11.
    Chang, T., Kuo, C.C.J.: Proc. Int. Conf. Acoust. Speech, Signal Proc, vol. 3, pp. 661–664 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Margarita Fernández
    • 1
  • Adriana Mavilio
    • 1
  • Héctor Rabal
    • 2
  • Marcelo Trivi
    • 2
  1. 1.Instituto Superior Politécnico “José A. Echeverría”, Dpto. de FísicaFacultad de Ingeniería EléctricaLa HabanaCuba
  2. 2.Centro de Investigaciones Ópticas (CIC-CONICET) and UID Optimo, Dpto. Fisicomatemáticas, Facultad de IngenieríaUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations