Enhancement of Noisy Speech Using Sliding Discrete Cosine Transform

  • Vitaly Kober
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2905)


Denoising of speech signals using a sliding discrete cosine transforms (DCT) is proposed. A minimum mean-square error (MMSE) estimator in the domain of a sliding DCT is derived. In order to provide speech processing in real time, a fast recursive algorithm for computing the sliding DCT is presented. The algorithm is based on a recursive relationship between three subsequent local DCT spectra. Extensive testing has shown that background noise in actual environment such as the helicopter cockpit can be made imperceptible by proper choice of suppression parameters.


Discrete Cosine Transform Speech Signal Discrete Fourier Transform Discrete Cosine Transform Coefficient Speech Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Boll, S.F.: Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. Acoust. Speech Signal Process ASSP-27, 113–120 (1979)CrossRefGoogle Scholar
  2. 2.
    Lim, J.S., Oppenheim, A.V.: Enhancement and bandwidth compression of noisy speech. Proc. IEEE 67, 1586–1604 (1979)CrossRefGoogle Scholar
  3. 3.
    McAulay, R.J., Malpass, M.L.: Speech enhancement using a soft-decision noise suppression filter. IEEE Trans. Acoust. Speech Signal Process. ASSP-28, 137–145 (1980)CrossRefGoogle Scholar
  4. 4.
    Ephraim, Y., Malah, D.: Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator. IEEE Trans. Acoust. Speech Signal Process. ASSP-32(6), 1109–1121 (1984)CrossRefGoogle Scholar
  5. 5.
    Ahmed, M.S.: Comparison of noisy speech enhancement algorithms in terms of LPC perturbation. IEEE Trans. Acoust. Speech Signal Process. 37(1), 121–125 (1989)CrossRefGoogle Scholar
  6. 6.
    Chen, Y.M., O’Shaughnessy, D.: Speech enhancement based conceptually on auditory evidence. IEEE Trans. Signal Process. 39(9), 1943–1953 (1991)CrossRefGoogle Scholar
  7. 7.
    Ephraim, Y.: A Bayesian estimation approach for speech enhancement using hidden Markov models. IEEE Trans. Signal Process. 40, 725–735 (1992)CrossRefGoogle Scholar
  8. 8.
    Hu, H.T.: Robust linear prediction of speech signals based on orthogonal framework. Electronics Letters 34(14), 1385–1386 (1998)CrossRefGoogle Scholar
  9. 9.
    Oppenheim, A.V., Shafer, R.W.: Discrete-time signal processing. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  10. 10.
    Vitkus, R.Y., Yaroslavsky, L.P.: Recursive algorithms for local adaptive linear filtration. In: Yaroslavsky, L.P., Rosenfeld, A., Wilhelmi, W. (eds.) Mathematical Research, pp. 34–39. Academy Verlag, Berlin (1987)Google Scholar
  11. 11.
    Jain, A.K.: A sinusoidal family of unitary transforms. IEEE Trans. Pattern Anal. Machine Intell. PAMI-1(4), 356–365 (1979)CrossRefGoogle Scholar
  12. 12.
    Wang, Z.: Fast algorithms for the discrete W transform and for the discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. ASSP-32(4), 803–816 (1984)CrossRefGoogle Scholar
  13. 13.
    Kober, V., Cristobal, G.: Fast recursive algorithms for short-time discrete cosine transform. Electronics Letters 35(15), 1236–1238 (1999)CrossRefGoogle Scholar
  14. 14.
    Hou, H.S.: A fast recursive algorithm for computing the discrete cosine transform. IEEE Trans. Acoust. Speech Signal Process. ASSP-35(10), 1455–1461 (1987)Google Scholar
  15. 15.
    Britanak, V.: On the discrete cosine computation. Signal Process. 40(2-3), 183–194 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Vitaly Kober
    • 1
  1. 1.Department of Computer SciencesDivision of Applied Physics CICESEEnsenadaMexico

Personalised recommendations