Robust Estimation of Roughness Parameter in SAR Amplitude Images

  • Héctor Allende
  • Luis Pizarro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2905)


The precise knowledge of the statistical properties of synthetic aperture radar (SAR) data plays a central role in image processing and understanding. These properties can be used for discriminating types of land uses and to develop specialized filters for speckle noise reduction, among other applications. In this work we assume the distribution \(\mathcal{G}^{0}_{A}\) as the universal model for multilook amplitude SAR images under the multiplicative model. We study some important properties of this distribution and some classical estimators for its parameters, such as Maximum Likelihood (ML) estimators, but they can be highly influenced by small percentages of ‘outliers’, i.e., observations that do not fully obey the basic assumptions. Hence, it is important to find Robust Estimators. One of the best known classes of robust techniques is that of M estimators, which are an extension of the ML estimation method. We compare those estimation procedures by means of a Monte Carlo experiment.


Robust Estimation SAR Images Speckle Noise Monte Carlo 


  1. [AFGP03]
    Allende, H., Frery, A.C., Galbiati, J., Pizarro, L.: M-Estimators with Asymmetric Influence Functions: the \(\mathcal{G}^{0}_{A}\) Distribution Case. Technical Report 2003/5, Departamento de Informática, Universidad Técnica Federico Santa María. Submitted to Computational Statistics and Data AnalysisGoogle Scholar
  2. [AGV01]
    Allende, H., Galbiati, J., Vallejos, R.: Robust image modelling on image processing. Pattern Recognition Letters 22, 1219–1231 (2001)CrossRefGoogle Scholar
  3. [BLF02]
    Bustos, O.H., Lucini, M.M., Frery, A.C.: M-estimators of roughness and scale for \(\mathcal{G}^{0}_{A}\)-modelled SAR imagery. EURASIP Journal on Applied Signal Processing 1, 105–114 (2002)Google Scholar
  4. [CFS02]
    Cribari-Neto, F., Frery, A.C., Silva, M.F.: Improved estimation of clutter properties in speckled imagery. Computational Statistics and Data Analysis 40 (4), 801–824 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  5. [FMYS97]
    Frery, A.C., Müller, H.J., Yanasse, C.C.F., Sant’Anna, S.J.S.: A model for extremely heterogeneous clutter. IEEE Transactions on Geoscience and Remote Sensing 35(3), 648–659 (1997)CrossRefGoogle Scholar
  6. [HRRS86]
    Hampel, F., Ronchetti, E., Rousseeuw, P., Stahel, W.: Robust Statistics. Wiley, New York (1986)zbMATHGoogle Scholar
  7. [MFJB01]
    Mejail, M.E., Frery, A.C., Jacobo-Berlles, J., Bustos, O.H.: Approximation of distributions for SAR images: proposal, evaluation and practical consequences. Latin American Applied Research 31, 83–92 (2001)Google Scholar
  8. [MR96]
    Marazzi, A., Ruffieux, C.: Implementing M-estimators for the gamma distribution. In: Helmut, R. (ed.) Robust Statistics, Data Analysis and Computer Intensive Methods. Lecture Notes in Statistics, vol. 109, Springer, Berlin (1996)Google Scholar
  9. [OQ98]
    Oliver, C., Quegan, S.: Understanding Synthetic Aperture Radar Images. Artech House, London (1998)Google Scholar
  10. [RV02]
    Rousseeuw, P.J., Verboven, S.: Robust estimation in very small samples. Computational Statistics and Data Analysis 40 (4), 741–758 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  11. [TCG82]
    Tur, M., Chin, K.C., Goodman, J.W.: When is the speckle noise multiplicative? Applied Optics 21, 1157–1159 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Héctor Allende
    • 1
  • Luis Pizarro
    • 1
  1. 1.Departamento de InformáticaUniversidad Técnica Federico Santa MaríaValparaísoChile

Personalised recommendations