Improvement of the Fail-Safe Characteristics in Motion Analysis Using Adaptive Technique

  • Ayoub Al-Hamadi
  • Ruediger Mecke
  • Bernd Michaelis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2905)


In this paper, we propose an adaptive technique for the automatic extraction and tracking of moving objects in video sequences that works robustly under the influence of image-specific disturbances (e.g. brightness variations, shadow and partial occlusion). For this technique, we apply the colour information, a neural recognition system and a recursive filtering algorithm to the improvement of the matching quality when disturbances occur. This suggested intensity-based technique is adaptive and robust compared to the conventional intensity-based methods.


Kalman Filter Video Sequence Displacement Vector Motion Vector Motion Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Frank, T., Haag, M., Kollnig, H., Nagel, H.: Tracking of occluded vehicles in traffic scenes. In: 7th European Conference on Computer Vision, Cambridge, April 1996, pp. 485–494. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Deriche, R., Faugeras, O.: Tracking line segments. IVC 8(4), 261–270 (1990)Google Scholar
  3. 3.
    Rehrmann, V.: Object-oriented Motion Estimation in colour image sequences. In: Proc. Of the 5th European conference on computer vision, Freiburg, June 1998, Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Blake, A., Curwen, R., Zisserman, A.: A framework for spatio-temporal control in the tracking of visual contours; Inter. Journal of Computer Vision 11(2), 127–145 (1993)CrossRefGoogle Scholar
  5. 5.
    Badenas, J., Sanchitz, J.M., Pla, F.: Using Temporal Integration for Tracking Regions in Traffic Monitoring Sequences. In: 15th International Conference on Pattern Recognition, Barcelona, September 2000, vol. III, pp. 1137–1140 (2000)Google Scholar
  6. 6.
    Devaux, J.C., Gouton, P., Truchetet, F.: A erial colour image segmentation by Karhunen- Loeve Transform. In: ICPR 2000, Barcelona, vol. 1, pp. 309–312 (2000)Google Scholar
  7. 7.
    Al-Hamadi, A., Michaelis, B.: Fulfilment of the demand for robustness and flexibility in the motion analysis systems by adaptive colour space transformation. In: CGIV 2002, Poitiers, France, April 2002, pp. 540–545 (2002)Google Scholar
  8. 8.
    Sorenson, H.W.: Kalman Filtering: Theory and Application. IEEE Press, Los Alamitos (1985) ISBN 0-87942-191–6Google Scholar
  9. 9.
    Maybeck, P.S.: Stochastic Models, Estimation and Control, pp. 1–3. Acad. Press Inc, New York (1982)zbMATHGoogle Scholar
  10. 10.
    Mecke, R., Al-Hamadi, A., Michaelis, B.: A Robust Method for Block-Based Motion Estimation in RGB-Image Sequences. In: 14th ICPR 1998, Brisbane, Australien, pp. 663–667 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ayoub Al-Hamadi
    • 1
  • Ruediger Mecke
    • 1
  • Bernd Michaelis
    • 1
  1. 1.Institute for Electronics, Signal Processing and Communications (IESK)Otto-von-Guericke-University MagdeburgMagdeburgGermany

Personalised recommendations