Skip to main content

Fuzzy Cognitive Map Learning Based on Nonlinear Hebbian Rule

  • Conference paper
AI 2003: Advances in Artificial Intelligence (AI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2903))

Included in the following conference series:

Abstract

Fuzzy Cognitive Map (FCM) is a soft computing technique for modeling systems. It combines synergistically the theories of neural networks and fuzzy logic. The methodology of developing FCMs is easily adaptable but relies on human experience and knowledge, and thus FCMs exhibit weaknesses and dependence on human experts. The critical dependence on the expert’s opinion and knowledge, and the potential convergence to undesired steady states are deficiencies of FCMs. In order to overcome these deficiencies and improve the efficiency and robustness of FCM a possible solution is the utilization of learning methods. This research work proposes the utilization of the unsupervised Hebbian algorithm to nonlinear units for training FCMs. Using the proposed learning procedure, the FCM modifies its fuzzy causal web as causal patterns change and as experts update their causal knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kosko, B.: Fuzzy Cognitive Maps. Int. J. Man-Machine Studies 24, 65–75 (1986)

    Article  MATH  Google Scholar 

  2. Kosko, B.: Neural Networks and Fuzzy Systems. Prentice-Hall, New Jersey (1992)

    MATH  Google Scholar 

  3. Papageorgiou, E., Stylios, C.D., Groumpos, P.P.: Decision Making in external beam radiation therapy based on FCMs. In: Proceedings of the 1st International IEEE Symposium on Intelligent Systems, IS 2002, Varna, Boulgaria, September 10-12, CD-ROM (2002)

    Google Scholar 

  4. Papageorgiou, E.I., Stylios, C.D., Groumpos, P.P.: An Integrated Two-Level Hierarchical Decision Making System based on Fuzzy Cognitive Maps. IEEE Transactions on Biomedical Engineering 50(12) (December 2003)

    Google Scholar 

  5. Stylios, C.D., Groumpos, P.P.: Fuzzy Cognitive Maps in Modelling Supervisory Control Systems. Journal of Intelligent & Fuzzy Systems 8, 83–98 (2000)

    Google Scholar 

  6. Khan, S., Chong, A., Gedeon, T.A.: Methodology for Developing Adaptive Fuzzy Cognitive Maps for Decision Support. In: Proc. 3rd Australia-Japan Evolutionary Systems, Canberra, November 23-25, pp. 93–100 (1999)

    Google Scholar 

  7. Papageorgiou, E.I., Stylios, C.D., Groumpos, P.P.: Activation Hebbian Learning Rule for Fuzzy Cognitive Map Learning. In: Proc. of 15th IFAC World Congress of Inter. Federation of Automatic Control, Barcelona, Spain, July 21-26, CD-ROM (2002)

    Google Scholar 

  8. Stylios, C.D., Groumpos, P.P., Georgopoulos, V.C.: An Fuzzy Cognitive Maps Approach to Process Control Systems. Journal of Advanced Computational Intelligence 3(5), 409–417 (1999)

    Google Scholar 

  9. Kosko, B.: Fuzzy Engineering. Prentice-Hall, New Jersey (1997)

    MATH  Google Scholar 

  10. Aguilar, J.: Adaptive Random Fuzzy Cognitive Maps. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 402–410. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Oja, E.: A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology 16, 267–273 (1982)

    Article  MathSciNet  Google Scholar 

  12. Oja, E., Ogawa, H., Wangviwattana, J.: Learning in nonlinear constrained Hebbian networks. In: Kohonen, T., et al. (eds.) Artificial Neural Networks, pp. 385–390. North-Holland, Amsterdam (1991)

    Google Scholar 

  13. Oja, E.: Neural networks, principal components and subspaces. International Journal of Neural Systems 1, 61–68 (1989)

    Article  MathSciNet  Google Scholar 

  14. Lee, W.C., Oslhausen, B.A.: A nonlinear Hebbian network that learns to detect disparity in random-dot stereograms. Neural Computation 8, 545–566 (1996)

    Article  Google Scholar 

  15. Oja, E., Karhunen, J.: Nonlinear PCA, algorithm and applications. Report A18, Finland: Helsinski University of Technology (1993)

    Google Scholar 

  16. Hassoun, M.: Fundamentals of Artificial Neural Networks. MIT Press/Bradford Book, Massachusetts (1995)

    MATH  Google Scholar 

  17. Sudjianto, A., Hassoun, M.: Statistical basis of nonlinear hebbian learning and application to clustering. Neural Netwoks 8(5), 707–715 (1995)

    Article  Google Scholar 

  18. Biggs, N.L., Llooyd, E.K., Wilson, R.J.: Graph Theory 1736-1936. Clarendon Press, Oxford (1976)

    MATH  Google Scholar 

  19. Harary, F., Norman, R.J., Cartwright, D.: Structural models: an introduction to the theory of directed graphs, p. 201. John Wiley & Sons, New York (1965)

    MATH  Google Scholar 

  20. Axelrod, R.: Structure of Decision, the cognitive maps of political elites, p. 404. Princeton University Prass, Princeton (1976)

    Google Scholar 

  21. Lin, C.T., Lee, C.S.G.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  22. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy & Soft Computing. Prentice-Hall, Upper Saddle River (1997)

    Google Scholar 

  23. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Macmillan, Basingstoke (1994)

    MATH  Google Scholar 

  24. Zurada, J.: Introduction to Artificial Neural Systems. West Publishing Company, St. Paul (1992)

    Google Scholar 

  25. Koulouriotis, D.E., Diakoulakis, I.E., Emiris, D.M.: Learning Fuzzy Cognitive Maps using evolution strategies: A novel schema for modeling a simulating high-level behavior. In: Pro. 2001 IEEE Congress on Evolutionary Computation, Seoul, Korea, vol. 1, pp. 364–371 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Papageorgiou, E., Stylios, C., Groumpos, P. (2003). Fuzzy Cognitive Map Learning Based on Nonlinear Hebbian Rule. In: Gedeon, T.(.D., Fung, L.C.C. (eds) AI 2003: Advances in Artificial Intelligence. AI 2003. Lecture Notes in Computer Science(), vol 2903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24581-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24581-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20646-0

  • Online ISBN: 978-3-540-24581-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics