Skip to main content

Influence of kNN-Based Load Forecasting Errors on Optimal Energy Production

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNCS,volume 2902)

Abstract

This paper presents a study of the influence of the accuracy of hourly load forecasting on the energy planning and operation of electric generation utilities. First, a k Nearest Neighbours (kNN) classification technique is proposed for hourly load forecasting. Then, obtained prediction errors are compared with those obtained results by using a M5’. Second, the obtained kNN-based load forecast is used to compute the optimal on/off status and generation scheduling of the units. Finally, the influence of forecasting errors on both the status and generation level of the units over the scheduling period is studied.

Keywords

  • Nearest neighbours
  • load forecasting
  • optimal energy production

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-24580-3_26
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-24580-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Papalexopoulos, A.D., Hesterberg, T.C.: A Regression-Based Approach to Short-Term System Load Forecasting. IEEE Trans. on Power System 5, 1535–1547 (1990)

    CrossRef  Google Scholar 

  2. Nogales, F.J., Contreras, J., Conejo, A.J., Spínola, R.: Forecasting Next-Day Electricity Prices by Time Series Models. IEEE Trans. on Power System 17, 342–348 (2002)

    CrossRef  Google Scholar 

  3. Alfuhaid, S.A., El-Sayed, M.A.: Cascaded Artificial Neural Network for Short- Term Load Forecasting. IEEE Trans. on Power System 12, 1524–1529 (1997)

    CrossRef  Google Scholar 

  4. Riquelme, J., Martínez, J.L., Gómez, A., Cros Goma, D.: Load Pattern Recognition and Load Forecasting by Artificial Neural Networks. International Journal of Power and Energy Systems 22, 74–79 (2002)

    Google Scholar 

  5. Lamedica, R., Prudenzi, A., Sforna, M., Caciotta, M., Orsolini Cencellli, V.: A Neural Network Based Technique for Short-Term Forecasting of Anomalous Load Periods. IEEE Transaction on Power Systems 11, 1749–1756 (1996)

    CrossRef  Google Scholar 

  6. Troncoso Lora, A., Riquelme Santos, J.C., Riquelme Santos, J.M., Martínez Ramos, J.L., Gómez Expósito, A.: Electricity Market Price Forecasting: Neural Networks versus Weighted-Distance k Nearest Neighbours. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, p. 321. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  7. Troncoso Lora, A., Riquelme Santos, J.M., Riquelme Santos, J.C., Gómez Expósito, A., Martínez Ramos, J.L.: Forecasting Next-Day Electricity Prices based on k Weighted Nearest Neighbours and Dynamic Regression. IDEAL Intelligent Data Engineering Autamitized Learning, Manchester (2001)

    Google Scholar 

  8. Dasarathy, B.V.: Nearest neighbour (NN) Norms: NN pattern classification techniques. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  9. Short, R.D., Fukunaga, K.: The Optimal Distance Measure for Nearest Neighbour Classification. IEEE Transaction on Information Theory (1981)

    Google Scholar 

  10. Fukunaga, K., Flick, T.E.: An Optimal Global Nearest Neighbour Metric. IEEE Transaction on Pattern Analysis and Machine Intelligence (1984)

    Google Scholar 

  11. Wood, A.J., Wollenberg, B.F.: Power Generation, Operation and Control. John Wiley & Sons, Chichester (1996)

    Google Scholar 

  12. Martínez Ramos, J.L., Troncoso Lora, A., Riquelme Santos, J., Gómez Expósito, A.: Short Term Hydro-thermal Coordination Based on Interior Point Nonlinear Programming and Genetic Algorithms. In: IEEE Porto Power Tewch Conference (2001)

    Google Scholar 

  13. Holmes, G., Hall, M., Frank, E.: Generating Rule Sets from Model Trees. In: Australian Joint Conference on Artificial Intelligence (1999)

    Google Scholar 

  14. Quinlan, J.R.: Learning with Continuous Classes. In: Australian Joint Conference on Artificial Intelligence (1992)

    Google Scholar 

  15. Wang, Y., Witten, I.H.: Induction of Model Trees for Predicting Continuous Classes. In: European Conference on Machine Learning (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Troncoso Lora, A., Riquelme, J.C., Martínez Ramos, J.L., Riquelme Santos, J.M., Gómez Expósito, A. (2003). Influence of kNN-Based Load Forecasting Errors on Optimal Energy Production. In: Pires, F.M., Abreu, S. (eds) Progress in Artificial Intelligence. EPIA 2003. Lecture Notes in Computer Science(), vol 2902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24580-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24580-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20589-0

  • Online ISBN: 978-3-540-24580-3

  • eBook Packages: Springer Book Archive