Skip to main content

Part of the book series: Laser in der Materialbearbeitung ((LAMA))

  • 57 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Brandli, H. F.; Keller, M.; Roulier, A.: Microdrilling ruby watch jewels. Laser Focus 26, May 1967.

    Google Scholar 

  2. Shkarofsky, I. P.: Review on industrial applications of high goer laser beams III. RCA Review, Vol. 36, June 1975, S. 336–369.

    Google Scholar 

  3. Tonshoff, H. K.; von Alvensleben, F.: Bohrungen in metallische und keramische Werkstoffe mit cw-Q-switch Nd:YAG-Laserstrahlen. In: Junge, H. (Hrsg.): Abtragen und Bohren mit Festkörperlasern, VDI Technologiezentrum Physikalische Technologien, März 1993, S. 1–7.

    Google Scholar 

  4. Hügel, H.: Strahlwerkzeug Laser. Teubner Verlag, Stuttgart, 1992.

    Google Scholar 

  5. Hodgson, N.; Weber, H.: Optische Resonatoren. Springer Verlag, 1992.

    Google Scholar 

  6. von Arb, H.-P.; Ldchinger, C.; Studer, F., Unternahrer, J.; Dürr, U.; Gressly, A.; Poli, J.-C.; Sidler, T.; Steffen, J.: Eigenschaften von gepulsten Festkörper Slablasern. In: Waidelich, W. (Hrsg.): Vorträge des 8. Int. Kongress Optoelektronik in der Technik Laser 87, 1987, S. 339–343.

    Google Scholar 

  7. Konig, W.: Fertigungsverfahren Band 3: Abtragen. VDI Verlag, Düsseldorf, 1990.

    Google Scholar 

  8. Snoeys, R.; Staelens, F.; Dekeyser, W.: Current trends in non-conventional material removal processes. Annals of the CIRP, Vol. 35, No. 2, 1986, 5. 467–480.

    Google Scholar 

  9. von Dobeneck, D.: Abtragende Bearbeitungsverfahren mit dem Elektronenstrahl. Fertigung (1972) 4, S. 113–117.

    Google Scholar 

  10. Meyer, E.: Heutiger Stand des Elektronenstrahlbohrens. In: Internationale Konferrenz “Strahltechnik”, DVS-Berichte Band 63, 7. und 8. Mai 1980, S. 143–146.

    Google Scholar 

  11. Schuler, A.: Materialbearbeitung mit Elektronenstrahlen. Technik-Report, 1982, 11, S. 25–27.

    Google Scholar 

  12. von Dobeneck, D.: Elektronenstrahlbohren — der Prozeß und seine Anwendung. In: Kleine Löcher aber wie?, VDI Verlag, Böblingen, 14. Oktober 1988, S. 47–57.

    Google Scholar 

  13. Bohme, D.: Perforation, welding and surface treatment with EBM and LBM. In: Proc. of ISEM 7, Int. Symposium for ElectroMachining, 12.-14. April 1983.

    Google Scholar 

  14. Adam, P.: Elektrochemisches Bohren kleiner Löcher. In: Kleine Löcher aber wie?, VDI Verlag, Böblingen, 14. Oktober 1988, S. 133–161.

    Google Scholar 

  15. Breidenbach, G.: Feinbohren im Flugtriebwerkbau. Industrie-Anzeiger 106 (1984) 92, S. 39–43.

    Google Scholar 

  16. Chryssolouris, G.; Wollowitz, M.; Sub, N. P.: Electrochemical drilling. Annals of the CIRP, Vol. 33, No. 1, 1984, S. 99–104.

    Article  Google Scholar 

  17. Kobayashi, K.: The present and future developments of EDM and ECM. In: Griethuysen, J.-P. S.; Kiritsis, D. (Hrsg.): Proc. of ISEM 11 Int. Symposium for ElectroMachining, Lausanne, 17.-21. April 1995, S. 29–49.

    Google Scholar 

  18. Allen, D. M.; Huang, S. X.: An investigation into the multi-electrode EDM of micro holes. In: Griethuysen, J.-P. S.; Kiritsis, D. (Hrsg.): Proc. of ISEM 11 Int. Symposium for ElectroMachining, Lausanne, 17.-21. April 1995, 5.389398.

    Google Scholar 

  19. Schreiber, O.: Maschinen und Einrichtungen für das funkenerosive Bohren. In: Kleine Löcher aber wie?, VDI Verlag, Böblingen, 14. Oktober 1988, S. 116.

    Google Scholar 

  20. Belforte, D.; Levitt, M.: Laser vs non-laser process comparison. In: The Industrial Laser Annual Handbook, 1987 Edition, PennWell Books, Tulsa, 1987, S. 26–29.

    Google Scholar 

  21. Riesen, W.: Herstellen kleiner Löcher in der Feinwerktechnik. In: Kleine Löcher aber wie?, VDI Verlag, Böblingen, 14. Oktober 1988, S. 33–46.

    Google Scholar 

  22. Poerschke, H. F.; Hefendehl, F.; Hessler, R: Herstellung kleiner Bohrungen mit Spiralbohrern aus Hochleistungsstahl. In: Kleine Löcher aber wie?, VDI Verlag, Böblingen, 14. Oktober 1988, S. 79–108.

    Google Scholar 

  23. Adithan, M.; Venkatesh, V. C.: An appraisal of wear mechanismus in ultrasonic drilling. Annals of the CIRP, Vol. 27, No. 1, 1978, S. 119–121.

    Google Scholar 

  24. Kainth, G. S.; Nandy, A; Singh, K.: On the mechanics of material removal in ultrasonic machining. Int. Journal of Mach. Tool. Des. Res., Vol. 19, 1979, S. 33–41.

    Article  Google Scholar 

  25. Sievers, R.: Grundlagen und praktische Anwendungen des UltraschallBohrverfahrens. Maschinenmarkt, Würzburg, 80 (1974) 103, S. 2122–2124.

    Google Scholar 

  26. Haas, R.: Ultraschallerosion in vielen Fällen die Lösung. In: Kleine Löcher aber wie?, VDI Verlag, Böblingen, 14. Oktober 1988, S. 163–171.

    Google Scholar 

  27. Rohde, H.; Verboven, P.: Precision cutting and drilling with a Nd:YAG slab laser. In: Griethuysen, J.-P. S.; Kiritsis, D. (Hrsg.): Proc. of ISEM 11 Int. Symposium for ElectroMachining, Lausanne, 17.-21. April 1995, S. 777–783.

    Google Scholar 

  28. Wagner, D.: Laserbohren mit Fetskörperlasern. VDI Bildungswerk BW 1347.

    Google Scholar 

  29. Heglin, L. M.: Introduction to laser drilling. In: Belforte, D.; Levitt, M. (Hrsg.): The Industrial Laser Annual Handbook, 1986 Edition, PennWell Books, Tulsa, 1986, S. 116–120.

    Google Scholar 

  30. van Diik, M. H. R: Drilling of aero-engine components: Experiences from the shop floor. In: Belforte, D.; Levitt, M.: Industrial Laser Handbook, Springer Verlag, New York, 1992, S. 113–118.

    Google Scholar 

  31. Rohde, H; Meiners, E.: Trepan drilling of fuel injection nozzles with a TEM00 Nd:YAG slab laser. Journal of Laser Applications, Vol. 8, No. 2, April 1996, S. 95–101.

    Article  Google Scholar 

  32. Dürr, U.: Bohren mit dem Festkörperlaser. In: Technische Rundschau Workshop, Laser für die Materialbearbeitung in der Mikrotechnik, März 1990.

    Google Scholar 

  33. Chichkov, B. N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tunnermann, A.: Femtosecond, picosecond and nanosecond laser ablation of solids. Journal of Applied Physics, Vol. A63, No. 2, August 1996, 5. 109–115.

    Article  Google Scholar 

  34. Luft, A.; Franz, U.; Emsermann, A.; Kaspar, J.: A study of thermal and mechanical effects on materials induced by pulsed laser drilling. Journal of Applied Physics, Vol. A63, No. 2, August 1996, S. 93–101.

    Google Scholar 

  35. Simon, G.; Vicanek, M.; Rethfeld, B.: Abtragen von Metallen und Isolatorenmit großer Bandlücke durch Femtosekundenlaserpulse. Projektbericht, September 1996.

    Google Scholar 

  36. Körner, C.: Theoretische Untersuchungen zur Wechselwirkung von ultrakurzen Laserpulsen mit Metallen. Dissertation, Universität Erlangen, Mai 1997.

    Google Scholar 

  37. Hummel, R. E.: Optische Eigenschaften von Metallen und Legierungen. Reine und angewandte Metallkunde in Einzeldarstellungen, Band 22, Springer Verlag, 1971.

    Google Scholar 

  38. Dausinger, F.: Strahlwerkzeug Laser: Energieeinkopplung und Prozeßeffektivität. Habilitation, Laser in der Materialbearbeitung, Forschungsberichte des IF SW, Teubner, Stuttgart, 1995.

    Google Scholar 

  39. Prokhorov, A. M.; Konov, V. I.; Ursu, I; Mihailescu, I. N.: Laser heating of metals. Adam Hager, Bristol, Philadelphia und New York, 1990.

    Google Scholar 

  40. Palik, E. D.: Handbook of optical constants of solids, Part II. Academic Press, Orlando, 1985, S. 394.

    Google Scholar 

  41. Dausinger, F.: Laser Materialbearbeitung: kostengünstiger durch Steigerung des Einkoppelgrades. Laser und Optoelektronik, 27(2)/1995, S.54–63.

    Google Scholar 

  42. Nonhof, C. J.: Material processing with Nd-lasers. Electrochemical Publications, 1988.

    Google Scholar 

  43. Chun, M. K.; Rose, K.: Interaction of high-intensity laser beams with metals. Journal of Applied Physics Vol. 41, No. 2, February 1970, S. 614–620.

    Article  Google Scholar 

  44. Carslaw, H. S.; Jaeger, J. C.: Conduction of heat in solids. Clarendon Press, Oxford, 2nd Edition, 1959.

    Google Scholar 

  45. Ready, J. F.: Effects of high power laser radiation. Academic Press, New York, 1971.

    Google Scholar 

  46. Duley, W. W.: CO2-Lasers effects and applications. Academic Press, New York, 1976.

    Google Scholar 

  47. Duley, W. W.: Laser processing and analysis of materials. Plenum Press, New York, 1983.

    Book  Google Scholar 

  48. Charschan, S. S.: Lasers in industry. Van Nostrand Reinhold Co., New York, 1972.

    Google Scholar 

  49. Bass, M.: Laser heating of solids. In: Bertolotti, M. (Hrsg.): Physical processes in laser-materials interactions, Plenum Press, New York, 1983, S. 77–115.

    Google Scholar 

  50. Cohen, M. I.: Material processing. In: Arecchi, F. T.; Schulz-Dubois, E. O. (Hrsg.): Laser Handbook, Vol. 2, North-Holland Publishing Comp., 1972, S. 1577–1647.

    Google Scholar 

  51. Abramowitz, M.; Stegun, I, A.: Handbook of mathematical functions. Dover Publications, New York, Dezember 1972.

    Google Scholar 

  52. Ready, J. F.: Effects due to absorption of laser radiation. Journal of Applied Physics Vol. 36, No. 2, February 1965, S. 462–468.

    Article  Google Scholar 

  53. Landau, H. G.: Heat conduction in a melting solid. Quart. Applied Mathematics, Vol. 8, No. 1, 1950, S. 81–94.

    MATH  Google Scholar 

  54. Afanasev, Y. V.; Krokhin, O. N.: Vaporization of matter exposed to laser emission. Soviet Physics JETP, Vol. 25, No. 4, October 1967, S. 639–645.

    Google Scholar 

  55. Rykalin, N. N.; Uglov, A. A.; Makarov N. I.: Effects of peak frequency in a laser pulse on the heating of metal sheets. Soviet Physics-Doclady, Vol. 12, No. 6, December 1967, S. 644–646.

    Google Scholar 

  56. Anisimov, S. I.: Vaporization of metal absorbing laser radiation. Soviet Physics JETP, Vol. 27, No. 1, July 1968, S. 182–183.

    Google Scholar 

  57. Kocher, E; Tschudi, L.; Steffen, J.; Herziger, G.: Dynamics of laser processing in transparent media. IEEE Journal of Quantum Electronics,Vol. QE-8, No. 2, February 1972, S. 120–125.

    Article  Google Scholar 

  58. Wagner, R. E.: Laser drilling mechanics. Journal of Applied Physics, Vol. 45, No. 10, October 1974, S. 4631–4637.

    Article  Google Scholar 

  59. Paek, U.-C.; Gagliano, F. P.: Thermal analysis of laser drilling processes. IEEE Journal of Quantum Electronics, Vol. QE-8, No. 2, February 1972, S. 112–119.

    Google Scholar 

  60. Dabby, F. W.; Paek, U.-C.: High-intensity laser-induced vaporization and explosion of solid material. IEEE Journal of Quantum Electronics, Vol. QE-8, No. 2, February 1972, S. 106–111.

    Article  Google Scholar 

  61. von Allmen, M.: Laser drilling velocity in metals. Journal of Applied Physics, Vol. 47, No. 12, December 1976, S. 5460–5463.

    Article  Google Scholar 

  62. Hugenschmidt, M.: Interaction of repetitively pulsed high energy laser radiation with matter. In: Schuöcker, D. (Hrsg.): SPIE Vol. 650 High power lasers and their industrial applications, 1986, S. 195–201.

    Chapter  Google Scholar 

  63. Krokhin, O. N.: “Matched” plasma heating mode using laser radiation. Soviet Physics–Technical Physics, Vol. 9, No. 7, January 1965, S. 1024–1026.

    Google Scholar 

  64. Zel’dovich, Ya. B.; Raizer, Yu. P.: Physics of shock waves and high- temperature hydrodynamic phenomena. Acadamic Press, Vol. I and I I, 1966.

    Google Scholar 

  65. Basov, N. G.; Krokhin, O. N.; Sklizkov G. V.: Gas dynamics of laser plasma in the course of heating. Soviet Physics JETP, Vol. 34, No. 1, January 1972, S. 81–84.

    Google Scholar 

  66. Prokhorov, A. M.; Batanov, V. A.; Bunkin, F. V.; Fedorov, V. B.: Metal evaporation under powerful optical radiation. IEEE Journal of Quantum Electronics, Vol. QE-9, No. 5, May 1973, S. 503–510.

    Article  Google Scholar 

  67. Hamilton, D. C.; James, D. J.: Hole drilling with a repetitively pulsed TEA CO 2 laser. Journal of Physics D: Applied Physics, Vol. 9, 1976 (Letter to the editor), S. L41 - L43.

    Article  Google Scholar 

  68. Hettche, L. R.; Tucker, T. R.; Schriempf, J. T.; Stegman, R. L.; Metz, S. A.: Mechanical response and thermal coupling of metallic targets to high-intensity 1.06p laser radiation. Journal of Applied Physics, Vol. 47, No. 4, April 1976, S. 1415–1421.

    Article  Google Scholar 

  69. Piri, A. N.; Root, R. G.; Wu, P. K. S.: Plasma energy transfer to metal surfaces irradiated by pulsed lasers. AIAA Journal, Vol. 16, No. 12, December 1978, S. 1296–1304.

    Article  Google Scholar 

  70. Peschko, W.: Abtragung fester Targets durch Laserstrahlung. Dissertation, TH Darmstadt, Fachbereich Physik, 20. Mai 1981.

    Google Scholar 

  71. Matsunawa, A.; Yoshida, H.; Katayma, S.: Beam — plume interaction in pulsed YAG laser processing. In: Proc. Materials processing ICALEO ‘84, Vol. 44, Laser Institute of America, Orlando, Florida, 1984, S. 35–41.

    Google Scholar 

  72. Treusch, H.-G.; Herziger, G.: Metal precision drilling with lasers. In: Schuöcker, D. (Hrsg.): SPIE Vol. 650 High power lasers and their industrial applications, 1986, S. 220–225.

    Chapter  Google Scholar 

  73. Yilbas, B. S.: The absorption of incident beams during laser drilling of metals. Optics and Laser Technology, February 1986, S. 27–32.

    Google Scholar 

  74. Yilbas, B. S.; Yilbas, Z.: Plasma transients during laser drilling in subatmospheric pressure atmospheres of air. Optics and Lasers in Engineering, Vol. 7, 1986/87, S.1–13.

    Google Scholar 

  75. von Allmen, M.; Stormer, E.: Influence of laser-supported detonation waves on metal drilling with pulsed CO 2 lasers. Journal of Applied Physics, Vol. 49, No. 11, November 1978, S. 5648–5654.

    Article  Google Scholar 

  76. Bonch-Bruevich, A. M.; Imas, Ya. A.; Romanov, G. S.; Libenson, M. N.; Malt’tsev, L. N.: Effect of a laser pulse on the reflecting power of a metal. Soviet Physics–Technical Physics, Vol. 13, No. 5, November 1968, 5. 640–643.

    Google Scholar 

  77. Libenson, M. N.; Romanov, G. S.; Imas, Ya. A.: Temperature dependence of the optical constants of a metal in heating by laser radiation. Soviet Physics–Technical Physics, Vol. 13, No. 7, January 1969, S. 925–928.

    Google Scholar 

  78. Basov, N. G.; Boiko, V. A.; Krokhin, O. N.: Reduction of reflection coefficient for intense laser radiation on solid surfaces. Soviet Physics–Technical Physics, Vol. 13, No. 1, May 1969, S. 1581–1582.

    Google Scholar 

  79. Vilenskaya, G. G.; Nemchinov, I. V.: Sudden increase in absorption of laser radiation and associated gasdynamic effects. Soviet Physics–Doclady, Vol. 14, No. 6, December 1969, S. 560–563.

    Google Scholar 

  80. Ujihara, K.: Reflectivity of metals at high temperatures. Journal of Applied Physics, Vol. 43, No. 5, May 1972, S. 2376–2383.

    Article  Google Scholar 

  81. Ready, J. F.: Change of reflectivity of metallic surfaces during irradiation by CO2-TEA laser pulses. IEEE Journal of Quantum Electronics, Vol. QE-12, No. 2, February 1976, S. 137–142.

    Article  Google Scholar 

  82. von Allmen, M.; Blaser, P.; Affolter, K.; Stürmer, E.: Absorption phenomena in metal drilling with Nd-lasers. Journal of Quantum Electronics, Vol. QE-14, No. 2, February 1978, S. 85–88.

    Article  Google Scholar 

  83. Armon, E.; Zvirin, Y.; Laufer, A.: Metal drilling with a CO2 laser beam. I. Theory. Journal of Applied Physics, Vol. 65, No. 12, 15 June 1989, 5. 4995–5002.

    Google Scholar 

  84. Nowak, T.; Pryputniewicz, R. J.: Theoretical and experimental investigation of laser drilling in a partially transperent medium. Journal of Electronic Packaging, Vol. 114, March 1992, S. 71–80.

    Article  Google Scholar 

  85. Anisimov, S. I.; Bonch-Bruevich, A. M.; Elyashevich, M. A.; Imas Ya. A.; Pavlenko, N. A.; Romanov, G. S.: Effect of powerful light fluxes on metals. Soviet Physics-Technical Physics, Vol. 11, No. 7, January 1967, 5. 945952.

    Google Scholar 

  86. Duley, W. W.; Young, W. A.: Kinetic effects in drilling with the CO2. Journal of Applied Physics, Vol. 44, No. 9, September 1973, S. 4236–4237.

    Article  Google Scholar 

  87. Gagliano, F. P.; Paek, U.-C.: Observation of laser-induced explosion of solid materials and correlation with theory. Applied Optics, Vol. 13, No. 2, February 1974, S. 274–279.

    Article  Google Scholar 

  88. Uglov, A. A.; Kokora, A. N.; Orekov, N. V.: Laser drilling of holes in materials with different thermal properties. Soviet Journal of Quantum Elecetronics, Vol. 6, No. 3, March 1976, S. 311–315.

    Article  Google Scholar 

  89. Anthony, T. R.: The random walk of a drilling laser beam. Journal of Applied Physics, Vol. 51, No. 2, February 1980, 5. 1170–1175.

    Article  MathSciNet  Google Scholar 

  90. Murthy, J.; Mueller, R. E; Semak, V. V.; Mccay, M. H.: Investigation of the drilling dynamics in Ti-6A1–4V using high speed photography. In: Proc. Materials processing ICALEO ‘84, Vol.79, Laser Institute of America, 5. 820–828.

    Google Scholar 

  91. Batanov, V. A.; Fedorov, V. B.: Flushing out the liquid phase–A new mechanism of producing a crater in planar fully developed evaporation of a metallic target by a laser beam. Soviet Physics JETP Letters, Vol. 17, 1973, S. 247–249.

    Google Scholar 

  92. Bar-Isaac, C.; Korn, U.: Moving heat source dynamics in laser drilling processes. Applied Physics, 3, 1974, S. 45–54.

    Article  Google Scholar 

  93. Cingolani, A.; Ferrara, M.; Lugara, M.: Metal drilling investigation by means of different high power laser radiation. Applied Physics Communications, Vol. 2 (1 and 2), 1982, S. 9–16.

    Google Scholar 

  94. Yilbas, B. S.: Investigation into drilling speed during laser drilling of metals. Optics and Laser Technology, Vol. 20, No. 1, February 1988, S. 29–32.

    Article  Google Scholar 

  95. Basu, S.; Debroy, T.: Liquid metal expulsion during laser irradiation. Journal of Applied Physics, Vol. 72, No. 8, 15. October 1992, S. 3317–3322.

    Article  Google Scholar 

  96. von Allmen, M.: Prozesse beim Laserbohren in Metallen. Dissertation, Institut fir Exakte Wissenschaften, Bern, 1975.

    Google Scholar 

  97. Yilbas, B. S.: Study of affecting parameters in laser hole drilling of sheet metals. Transaction of the ASME, Vol. 109, October 1987, S. 282–287.

    Google Scholar 

  98. Ready, J. F.: Industrial applications of lasers. Academic Press, Orlando FL, 1978.

    Google Scholar 

  99. Roos, S.-O.: Laser drilling with different pulse shapes. JOURNAL of Applied Physics, Vol. 51, No. 9, September 1980, S. 5061–5063.

    Article  Google Scholar 

  100. Dickmann, K.; von Alvensleben, F.; Friedl, S.: Fein-und Mikrobohren mit Nd:YAG-O-switch-Laser hoher Strahlqualität. Laser und Optoelektronik 23 (6)/1991, S.56–62.

    Google Scholar 

  101. Olson, R. W.; Swope, W. C.: Laser drilling with focused Gaussian beams. Journal of Applied Physics, Vol. 72, No. 8, 15. October 1992, S. 3686–3696.

    Article  Google Scholar 

  102. Kar, A; Mazumder, J.: Mathematical model for multiple reflections during laser drilling. In: Proc. Materials processing ICALEO ‘84, Vol.79, Laser Institute of America, S.490–498.

    Google Scholar 

  103. Tam, S. C.; Yeo, C. Y.; Jana, S.: Optimization of laser deep-hole drilling of Inconel 718 using the Taguchi method. Journal of Materials Processing Technology, 37 (1993), S. 741–757.

    Article  Google Scholar 

  104. Han, Y.-H.: Werkstoffveränderungen beim Laserschneiden von Stählen, Ni-Basis-und Cu-Ni-Legierungen und deren Einfluß auf die Schwingfestigkeit. VDI Verlag, Reihe 5: Grund-und Werkstoffe, Nr.167.

    Google Scholar 

  105. Meiners, E.: Abtragende Bearbeitung von Keramiken und Metallen mit gepulsten Nd: YAG-Laser als zweistufiger Prozeß. Dissertation, Laser in der Materialbearbeitung, Forschungsberichte des IFSW, Teubner Verlag, Stuttgart, 1995.

    Google Scholar 

  106. Stürmer, M.: Materialabtrag mit Nd:YAG-Lasern. Dissertation, Fortschritt-Berichte VDI, Reihe 2: Fertigungstechnik, Nr. 352, VDI-Verlag, 1995.

    Google Scholar 

  107. Batanov, V. A.; Bunkin F. V.; Prokhorov, A. M.; Fedorov, V. B.: Evaporation of metallic targets caused by intense optical radiation. Soviet Physics JETP, Vol. 36, No. 2, February 1973, S. 311–322.

    Google Scholar 

  108. Treusch, H. G.: Geometrie und Reproduzierbarkeit einer plasmaunterstützten Materialabtragung durch Laserstrahlung. Dissertation, TH Darmstadt, Fachbereich Physik, 1985.

    Google Scholar 

  109. Meiners, E.: Phänomenologische Untersuchungen zum Bohren von Metallen. Institut für Strahlwerkzeuge ( IFSW) Stuttgart, Interner Bericht, 1992.

    Google Scholar 

  110. von Allmen, M.; Blatter, A.: Laser-beam interactions with materials. Springer Verlag, Series Material Science Nr.2, 2nd Edition, 1995.

    Google Scholar 

  111. Eichler, J.; Hodgson, N.: Slab-Laser-Technologie — Ein Überblick. Laser Magazin, 4/89, S.12–18.

    Google Scholar 

  112. Eichler, J.: Thermische Effekte in Slab Lasern. In: Waidelich, W. (Hrsg.): Vorträge des 8. Int. Kongress Optoelektronik in der Technik Laser 87, 1987, S. 49–52.

    Google Scholar 

  113. Steffen, J.; Lortscher, J.-P.; Herziger, G.: Fundamental mode radiation with solid-state lasers. IEEE Journal of Quantum Electronics, Vol. QE-8, No. 2, February 1972, S. 239–245.

    Article  Google Scholar 

  114. Hodgson, N.; , Q.; Dong, S.; Eppich, U.; Wittrock, U.: HochleistungsFestkörper-Laser in Stab-, Slab-und Rohr-Geometrie. Laser und Optoelektronik, 23 (3), 1991, S. 82–92.

    Google Scholar 

  115. Martin, W. S.; Chernoch, J. P.: Multiple internal reflection face pumped laser. United States Patent 3, 633, 126, 1972.

    Google Scholar 

  116. Eggleston, J. M.; Kane, T. J.; Unternahrer, J.; Byer, R. L.: The slab geometry laser — Part I: Theory. IEEE Journal of Quantum Electronics, Vol. QE-20, No. 3, March 1984, S. 289–301.

    Article  Google Scholar 

  117. Kane, T. J.; Eggleston, J. M.; Byer, R. L.: The slab geometry laser — Part II: Thermal effects in a finite slab. IEEE Journal of Quantum Electronics, Vol. QE-21, No. 8, August 1985, S. 1195–1209.

    Article  Google Scholar 

  118. Eggleston, J. M.; Frantz, L. M.; Injeyan, H.: Derivation of the FrantzNodvik equation for Zig-Zag optical path, slab geometry, laser amplifiers. IEEE Journal of Quantum Electronics, Vol. QE-25, No. 8, August 1989, 5. 1855–1862.

    Article  Google Scholar 

  119. Hello, P.; Durand, E.; Fritschel, P. K.; Man, C. N.: Thermal effects in Nd:YAG slabs 3D modelling and comparison with experiments. Journal of Modern Optics, Vol. 41, No. 7, 1994, S. 1371–1390.

    Article  Google Scholar 

  120. von Arb, H.-P.; Dorr, U.; Gressly, A.; Studer, F.: Laser with improved cooling system. United States Patent 4, 881, 233, 14. Nov. 1989.

    Google Scholar 

  121. Rohde, H.: Präzisionsbohren mit einem gepulsten Nd:YAG Slab-Laser. Diplomarbeit 93–30, Institut fiir Strahlwerkzeuge (IFSW ), Stuttgart, 1993.

    Google Scholar 

  122. Sidler, T.: persönliche Mitteilungen.

    Google Scholar 

  123. Kneubohl, F. K.; Sigrist, M. W.: Laser. Teubner Verlag, Stuttgart, 1989.

    Book  Google Scholar 

  124. Siegman, A. E.: Lasers. University Science Book, Mill Valey, 1986, S.746í%.

    Google Scholar 

  125. DIN V 18730: Grundbegriffe der Lasertechnik. 1991.

    Google Scholar 

  126. Koechner, W.: Solid-state laser engineering. 4th Edition, Springer Verlag, 1995.

    Google Scholar 

  127. Goldstein, R.: Electro-optic devices in review. Lasers Applications, April, 1986.

    Google Scholar 

  128. Herziger, G.; Loosen, P. (Hrsg.): Werkstoffbearbeitung mit Laserstrahlung. Hanser Verlag, 1993.

    Google Scholar 

  129. Fieret, J.; Terry, M. J.; Ward, B. A.: Overview of flow dynamics in gas-assisted laser cutting. In: High Power Lasers, SPIE Vol.801, 1987, S. 243–250.

    Google Scholar 

  130. Edler, R.; Berger, P.: Vorstellung eines neuen Düsenkonzepts zum Lasertrennen. Laser und Optoelektronik 23 (5), 1991, S. 54–61.

    Google Scholar 

  131. Kar, A; Mazumder, J.: Two-dimensional model for materials removal for laser drilling. In: Mordike, B. L.: Laser treatment of materials. Proceedings of ECLAT’92, DGM Informationsgesellschaft, 1992.

    Google Scholar 

  132. VDI Technologiezentrum (Hrsg.): Schneiden mit CO2-Lasern. VDI-Verlag, Handbuchreihe Laser in der Materialbearbeitung, Band 1, 1993.

    Google Scholar 

  133. Mohr, U.: Geschwindigkeitsbestimmende Strahleigenschaften und Einkoppelmechanismen beim CO2-Laserschneiden von Metallen. Dissertation, Laser in der Materialbearbeitung, Forschungsberichte des IFSW, Teubner Verlag, Stuttgart, 1994.

    Book  MATH  Google Scholar 

  134. Semrau, H.: Laserschneiden: Erzeugen von oxidfreien Schnittflächen. Verlag Moderne Industrie, 1990.

    Google Scholar 

  135. Robin, J. E.; Nordin, P.: Improved cw laser penetration of solids using a superimposed pulsed laser. Applied Physics Letters, Vol. 29, No. 1, July 1976, S. 3–5.

    Article  Google Scholar 

  136. Harrach, R. J.: Analytical solutions for laser heating and burnthrough of opaque solid slabs. Journal of Applied Physics, Vol. 48, No. 6, June 1977, S. 2370–2383.

    Article  Google Scholar 

  137. Takamoto, K.; Nakayama, S.: Temperature distribution in thin metal films irradiated by a gaussian laser beam. Review of the Electrical Communication Laboratories, Vol. 21, No. 9–10, September-Oktober 1973, 647–653.

    Google Scholar 

  138. N. N.: Steuerung der Bearbeitungsdauer beim Laserbohren zur Kontrolle des Bohrungsdurchmessers. AbschluBbericht, Fraunhofer-Institut fir Lasertechnik, Aachen, 1.2.86 bis 31. 5. 87.

    Google Scholar 

  139. Afanasyev, Yu. V.; Krokhin, O. N.; Sklizkov G. V.: 7A5 Evaporation and heating of a substance due to laser radiation. IEEE Journal of Quantum Electronics, Vol. QE-2, No. 9, September 1966, S. 483–486.

    Article  Google Scholar 

  140. Andreev, S. I.; Verzhikovskii, I. V.; Dymshits, Y. I.; Kulikov, V. V.; Neverov, V. G.: Time taken for a laser pulse to make a hole in a metal. Soviet Physics — Technical Physics, Vol. 17, No. 4, October 1972, 5. 705–707.

    Google Scholar 

  141. Duley, W. W.; Gonsalves, J. N.: Interaction of CO2 laser radiation with solids. II. Drilling of fused Quartz. Canadian Journal of Physics, Vol. 50, 1972, S. 216–221.

    Article  Google Scholar 

  142. Bar-Isaac, C.; Korn, U.; Shtrikman, S; Treues, D.: Thermal structure of the evaporation front in laser drilling processes. Applied Physics, 5, 1974, S. 121–125.

    Article  Google Scholar 

  143. Robin, J. E.; Nordin, P.: Effects of gravitationally induced melt removal on cw laser melt-through of opaque solids. Applied Physics Letters, Vol. 27, No. 11, December 1975, S. 593–595.

    Article  Google Scholar 

  144. Anthony, T. R.; Lindner, P. A.: The reverse laser drilling of transparent materials. Journal of Applied Physics, Vol. 51, No. 11, November 1980, 5. 5970–5975.

    Article  Google Scholar 

  145. Treusch, H.-G.; Poprawe, R.; Herziger, G.: Werkstoffbearbeitung mit Laserstrahlung: Teil 8 Bohren mit Laserstrahlung. Feinwerktechnik Messtechnik 95 (1987) 6, S. 381–388.

    Google Scholar 

  146. Chan, C. L.; Mazumder, J.: One-dimensional steady-state model for damage by vaporization and liquid expulsion due to laser-material interaction. Journal of Applied Physics, Vol. 62, No. 11, December 1987, S. 4579–4586.

    Article  Google Scholar 

  147. Armon, E.; Zvirin, Y.; Hill, M: Metal drilling with a CO2 laser beam. II. Analysis of aluminum drilling experiments. Journal of Applied Physics, Vol. 65, No. 12, 15 June 1989, S. 5003–5006.

    Google Scholar 

  148. Wester, R: Laserinduziertes Abdampfen als Basisprozess des Bohrens, Fräsen und Schneidens. Laser und Optoelektronik 23 (4)11991, S.60–63.

    Google Scholar 

  149. Dickmann, K.; von Alvensleben, F.: Bohren mit Laserstrahlung: Nd:YAGLaser setzen sich im Mikrobereich durch. Technische Rundschau, Heft 37, 1991, S. 68–72.

    Google Scholar 

  150. Dickmann, K.; von Alvensleben, F.: Feinbohren von CrNi-Stahl mit Laserstrahlung. Blech Rohre Profile 38 (1991) 9, S. 685–691.

    Google Scholar 

  151. Kar, A; Rockstroh, T.; Mazumder, J.: Two-dimensional model for laser-induced materials damage: Effects of assist gas and multiple reflections inside the cavity. Journal of Applied Physics, Vol. 71, No. 6, 15 March 1992, S.25602569.

    Google Scholar 

  152. Boley, C. C.; Early, J. T.: Computational model of drilling with high radiance pulsed lasers. In: Proc. Materials processing ICALEO ‘84, Vol.79, Laser Institute of America, S.499–508.

    Google Scholar 

  153. Kar, A; Mazumder, J.: Two-dimensional model for material damage due to melting and vaporization during laser irradiation. Journal of Applied Physics, Vol. 68, No. 8, 15 October 1990, S. 3884–3891.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 B. G. Teubner Stuttgart · Leipzig

About this chapter

Cite this chapter

Rohde, H. (1999). Literaturverzeichnis. In: Qualitätsbestimmende Prozeßparameter beim Einzelpulsbohren mit einem Nd:YAG-Slablaser. Laser in der Materialbearbeitung. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-96733-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-96733-6_9

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-519-06243-1

  • Online ISBN: 978-3-322-96733-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics