Advertisement

Skalarprodukte

  • Albrecht Beutelspacher

Zusammenfassung

In diesem Kapitel beschäftigen wir uns mit den möglichen (und sinnvollen) Verhältnissen, die zwei Vektoren miteinander haben können. Eine geometrische Betrachtungsweise ist der Winkel, den zwei Vektoren einschließen. Wir betrachten in diesem Kapitel nur solche Verhältnisse von Vektoren, die sich durch ein Körperelement beschreiben lassen. Mit anderen Worten: Wir betrachten also Abbildungen von V×V in K; solche Abbildungen nennt man traditionell Formen. Unglücklicherweise gibt es einen ganzen Zoo von verschiedenen und zu unterscheidenden Formen. Ich versuche, Ihnen dadurch Orientierung zu verschaffen, daß ich Ihnen zunächst nur eine Hälfte dieses Zoos zeige, nämlich denjenigen Teil, dessen Ziel das Studium der Skalarprodukte in reellen Vektorräumen ist. Sie sind eingeladen, die parallele Theorie für Skalarprodukte in komplexen Vektorräumen im „Projekt“ dieses Kapitels zu entwickeln.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1998

Authors and Affiliations

  • Albrecht Beutelspacher
    • 1
  1. 1.Mathematisches InstitutJustus-Liebig-UniversitätGießenDeutschland

Personalised recommendations