Advertisement

Koordinatentransformationen und geometrische Operatoren

  • Reinhard Klette
  • Piero Zamperoni

Zusammenfassung

Bei verschiedenen Bildoperatoren besteht das Ziel weniger in einer Veränderung der Bildwerte, sondern vordergründig in einer bestimmten geometrischen Abbildung eines gegebenen Bildes oder Bildausschnittes in die Bildebene. Diese Abbildung kann z.B. eine Verkleinerung, eine Verschiebung (Translation), eine Drehung (Rotation), eine Spiegelung (Inversion), eine geometrische Anpassung zweier Bilder (etwa um die Deckungsgleichheit der dargestellten Bildstrukturen zu erreichen) oder eine Aneinanderfügung benachbarter Bildausschnitte sein. Dabei wird i.a. auch eine gewisse Korrektur oder Angleichung von Bildwerten erforderlich sein. Das Wesen dieser geometrischen Operatoren ist jedoch durch (i.a. relativ einfache) Koordinatentransformationen K ausgezeichnet. Ein Pixel (x, y, f(x, y)) wird gemäß der gewählten Koordinatentransformation auf ein Pixel (K(x, y) f(x, y)) abgebildet, d.h. der Bildpunkt K(x, y) = (r, s) ist die neue Position des (alten) Bildwertes f(x, y).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [49]
    Ahrens, J.H., Dieter, U.: Extension of Forsythe’s method for random sampling from the normal distribution. Mathematics of Computation, Vol. 27, Oct. 1973, S. 927–937.MathSciNetzbMATHGoogle Scholar
  2. [50]
    Arce, G.R., McLoughlin, M.P.: Theoretical analysis of the max/median filter, IEEE Trans., Vol. ASSP-35, Jan. 1987, S. 60–69.Google Scholar
  3. [51]
    Arcelli, C., Cordelia, L., Levialdi, S.: Parallel thinning of binary pictures, Electronic Letters, Vol. 11, 1975, N. 7, S. 148–149.CrossRefGoogle Scholar
  4. [52]
    Arcelli, C., Cordelia, L., Levialdi, S.: More about a thinning algorithm, Electronic Letters, Vol. 16, 1980, N. 2, S. 51–53.CrossRefGoogle Scholar
  5. [53]
    Arcelli, C., Sanniti di Baja, G.: A width-independent fast thinning algorithm, IEEE Trans., Vol. PAMI-7, July 1985, S. 463–474.Google Scholar
  6. [54]
    Bednar, J.B., Watt, T.L.: Alpha-trimmed means and their relationship to median filters, IEEE Trans, Vol. ASSP-32, Feb. 1984, S. 145–153.Google Scholar
  7. [55]
    Bolon, P., Fruttaz, J.L.: Adaptive order filters: application to edge enhancement of noisy images, in: Lagunas, M.A. et al. (Hrsg.): Signal Processing V: Theories and Applications, Elsevier, Amsterdam, 1990, S. 817–820.Google Scholar
  8. [56]
    Bolon, P., Raji, A., Lambert, P., Mouhoub, M.: Symmetrical recursive median filters application to noise reduction and edge detection, in: Lagunas, M.A. et al. (Hrsg.), Signal Processing V: Theories and Applications, Elsevier, Amsterdam, 1990, S. 813–816.Google Scholar
  9. [57]
    Boukharouba, S., Rebordao, J.M., Wendel, P.L.: An amplitude segmentation method based on the distribution function of an image. Computer Vision, Graphics and Image Processing, Vol. 29, 1985, S. 47–59.CrossRefGoogle Scholar
  10. [58]
    Bourbakis, N.G., A parallel-symmetric thinning algorithm, Pattern Recognition, Vol. 22, 1989, N. 4, S. 387–396.CrossRefGoogle Scholar
  11. [59]
    Burt, P.J., Adelson, E.H.: The laplacian pyramid as a compact image code, IEEE Trans., Vol. COM-31, April 1983, S. 532–540.CrossRefGoogle Scholar
  12. [60]
    Cai, Y.L., Chen, C.S.: An edge preserving smoothing filter based on the robust estimate, Proc. 8th ICPR, Paris, 1986, S. 206–208.Google Scholar
  13. [61]
    Campbell, T.G., du Buf, J.M.: A quantitative comparison of median-based filters, in: Kunt, M. (Hrsg.), Proc. SPIE Conf. on Visual Communications and Image Processing, Lausanne, 1990, S. 176–187.Google Scholar
  14. [62]
    Chavez, P.: Simple high-speed digital image processing to remove quasi-coherent noise patterns, U.S. Geological Survey Computer Center Division, interner Bericht.Google Scholar
  15. [63]
    Chen, J.S., Huertas, A., Medioni, G.: Fast convolution with Laplacian-of-Gaussian masks, IEEE Trans., Vol. PAMI-9, July 1987, S. 584–590.Google Scholar
  16. [64]
    Chin, R.T., Wan, H.K., Stover, D.L., Iverson, R.D.: A one-pass thinning algorithm and its parallel implementation, Computer Vision, Graphics, and Image Processing, Vol. 40, 1987, S. 30–40.CrossRefGoogle Scholar
  17. [65]
    Davis, L.S.: A survey of edge detection techniques, Computer Graphics and Image Processing, Vol. 4, 1975, S. 248–270.CrossRefGoogle Scholar
  18. [66]
    Delia Giustina, D.: Progetto nel dominio della frequenza di filtri LoG per Vestrazione dei contorni, Diplomarbeit Nr. 197/90, Dipartimento di Elettro-nica e Informatica, Università di Padova, 1990.Google Scholar
  19. [67]
    Dillencourt, M.B., Samet, H.: Connected-component labeling of binary images, Technical Report CS-TR-2303, University of Maryland, 1989.Google Scholar
  20. [68]
    Eckhardt, U., Maderlechner, G.: Parallel reduction of digital sets, Siemens Forsch.- u. Entwickl.-Berichte, Bd. 17, 1988, N. 4, S. 184–189.MathSciNetzbMATHGoogle Scholar
  21. [69]
    Fahnestock, J.D., Schowengerdt, R.A.: Spatially variant contrast enhancement using local range modification, Optical Engineering, Vol. 22, N. 3, 1983, S. 378–381.Google Scholar
  22. [70]
    Haralick, R.M., Shapiro, L.G.: Glossary of computer vision terms, Pattern Recognition, Vol. 24, 1991, S. 69–93.CrossRefGoogle Scholar
  23. [71]
    Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology, IEEE Trans., Vol. PAMI-9, July 1987, S. 532–550.Google Scholar
  24. [72]
    Haralick, R.M.: Edge and region analysis for digital image data, Computer Graphics and Image Processing, Vol. 12, 1980, S. 60–73.CrossRefGoogle Scholar
  25. [73]
    Huertas, A., Medioni, G.: Detection of intensity changes with subpixel accuracy using Laplacian-of-Gaussian masks, IEEE Trans., Vol. PAMI-8, Sept. 1986, S. 651–664.Google Scholar
  26. [74]
    Itoh, K., Ichioka, Y., Minami, T.: Nearest-neighbor median filter, Applied Optics, Vol. 27, 1988, N. 16, S. 3445–3450.CrossRefGoogle Scholar
  27. [75]
    Kim, V., Yaroslavskii, L.: Rank algorithms for picture processing, Computer Vision, Graphics, and Image Processing, Vol. 35, 1986, S. 234–258.CrossRefGoogle Scholar
  28. [76]
    Klette, R.: Algorithmen und Programme, in: Autbild 85/3, Wissenschaftliche Beiträge der Friedrich-Schiller-Universität, Jena, 1985, S. 7–61.Google Scholar
  29. [77]
    Klette, R.: Entwurf und Analyse effizienter Algorithmen, in: Autbild′87, Wissenschaftliche Beiträge der Friedrich-Schiller-Universität, Jena, 1987, S. 114–153.Google Scholar
  30. [78]
    Kovalevsky, V.A.: Finite topology as applied to image analysis, Computer Vision, Graphics and Image Processing, Vol. 46, 1989, S. 141–161.CrossRefGoogle Scholar
  31. [79]
    Lee, J.S., Haralick, R.M., Shapiro, L.G.: Morphologic edge detection, Proc. 8th International Conference on Pattern Recognition, Paris, 1986, S. 369–373.Google Scholar
  32. [80]
    Lee, J.S.: Digital image smoothing and the sigma filter, Computer Vision, Graphics, and Image Processing, Vol. 24, 1983, S. 255–269.CrossRefGoogle Scholar
  33. [81]
    Lee, Y.H., Fam, A.T.: An edge gradient enhancing adaptive order statistic filter, IEEE Trans., Vol. ASSP-35, May 1987, S. 680–695.Google Scholar
  34. [82]
    Lee, Y.H., Kassam, S.A.: Generalized median filtering and related nonlinear filtering techniques, IEEE Trans., Vol. ASSP-33, June 1985, S. 672–683.Google Scholar
  35. [83]
    Magid A., Rotman, S.R., Weiss, A.M.: Comment on “Picture thresholding using an iterative selection method”, IEEE Trans., Vol. SMC-20, Sept./Oct. 1990, S. 1238–1239.Google Scholar
  36. [84]
    McDonnell, M.J.: Box-filtering techniques, Computer Graphics and Image Processing, Vol. 17, 1981, S. 65–70.CrossRefGoogle Scholar
  37. [85]
    Nagao, M., Matsuyama, T.: Edge preserving smoothing, Computer Graphics and Image Processing, Vol. 9, 1979, S. 394–407.CrossRefGoogle Scholar
  38. [86]
    Nieminen, A., Heinonen, P., Neuvo, Y.: A new class of detail-preserving filters for image processing, IEEE Trans., Vol. PAMI-9, Jan. 1987, S. 74–90.Google Scholar
  39. [87]
    Pavlidis, T.: A thinning algorithm for discrete binary images, Computer Graphics and Image Processing, Vol. 13, 1980, S. 142–157.CrossRefGoogle Scholar
  40. [88]
    Piper, J.: Efficient implementation of skeletonisation using interval coding, Pattern Recognition Letters, Vol. 3, 1985, S. 389–397.CrossRefGoogle Scholar
  41. [89]
    Pitas, I., Venetsanopoulos, A.N.: Nonlinear order statistic filters for image filtering and edge detection, Signal Processing, Vol. 10, 1986, S. 395–413.CrossRefGoogle Scholar
  42. [90]
    Presetnik F.F., Filipovic, M.: Adaptive median filtering of images degraded by speckle noise, in: Lacoume, J.L. et al. (Hrsg.), Signal Processing IV: Theories and Applications, Elsevier, Amsterdam, 1988, S. 651–654.Google Scholar
  43. [91]
    Raji, A., Bolon, P.: Streaking effects of recursive median filters and symmetrical recursive median filters, in: Cappellini, V. (Hrsg.), Proc. Intern. Conf. on Digital Signal Processing, Firenze, Sept. 1991.Google Scholar
  44. [92]
    Restrepo, A., Bovik, A.C.: Adaptive trimmed mean filters for image restoration, IEEE Trans., Vol. ASSP-36, Aug. 1988, S. 1326–1337.Google Scholar
  45. [93]
    Ridler, T.W., Calvard, S.: Picture thresholding using an iterative selection method, IEEE Trans., Vol. SMC-8, Aug. 1978, S. 630–632.Google Scholar
  46. [94]
    Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures, Pattern Recognition, Vol. 1, 1968, S. 33–61.MathSciNetCrossRefGoogle Scholar
  47. [95]
    Sahoo, P.K., Soitani, S., Wong, A.K.: A survey of thresholding techniques, Computer Vision, Graphics, and Image Processing, Vol. 41, 1988, S. 233–260.CrossRefGoogle Scholar
  48. [96]
    Scher, A., Dias Velasco, F.R., Rosenfeld, A.: Some new image smoothing techniques, IEEE Trans., Vol. SMC-10, March 1980, S. 153–158.Google Scholar
  49. [97]
    Schöniger, I.: Die Erkennung von Bodenerosionsschäden in digitalisierten Luftbildern mit Hilfe von Regionenwachstumsverfahren, Diplomarbeit, Institut für Geographie, Technische Universität Braunschweig, 1988.Google Scholar
  50. [98]
    Sezan, M.I.: A peak detection algorithm and its application to histogram-based image data reduction, Computer Vision, Graphics, and Image Processing, Vol. 49, 1990, S. 36–51.CrossRefGoogle Scholar
  51. [99]
    Siohan, P., Pelé, D., Ouvrard, V.: Two design techniques for 2-D LoG-Filters, in: Kunt, M. (Hrsg.), Proc. SPIE Conf. on Visual Communications and Image Processing, Lausanne, 1990, S. 970–981.Google Scholar
  52. [100]
    Sotak, G.E., Boyer, K.L.: The Laplacian-of-Gaussion kernel: a formal analysis and design procedure for fast, accurate convolution and full-frame output, Computer Vision, Graphics, and Image Processing, Vol. 48, 1989, S. 147–189.CrossRefGoogle Scholar
  53. [101]
    Suzuki, S., Abe, K.: Binary picture thinning by an iterative parallel two-subcicle operation, Pattern Recognition, Vol. 20, 1987, N. 3, S. 297–307.CrossRefGoogle Scholar
  54. [102]
    Tamura, H.: A comparison of line thinning algorithms from digital geometry viewpoint, Proc. 4th IJCPR, Kyoto, 1978, S. 715–719.Google Scholar
  55. [103]
    Trussell, H.J.: Comments on “Picture thresholding using an iterative selection method”, IEEE Trans., Vol. SMC-9, May 1979, S. 311.Google Scholar
  56. [104]
    Tyan, S.G.: Median filtering, deterministic properties, in: Huang, T.S. (Hrsg.), Two-dimensional digital signal processing II. Transforms and median filters, Springer, Berlin, 1981.Google Scholar
  57. [105]
    van den Boomgaard, R.: Threshold logic and mathematical morphology, in: Cantoni, V. et al. (Hrsg.): Progress in image analysis and processing, World Scientific Publishing, Singapore, 1990, S. 111–118.Google Scholar
  58. [106]
    Voss, K.: Shadingkorrektur in der automatischen Bildverarbeitung, Bild und Ton, Bd. 36, 1983, H. 6, S. 170–172.Google Scholar
  59. [107]
    Wang, D., Vagnucci, A.H., Li, C.C.: Gradient inverse smoothing scheme and the evaluation of its performance, Computer Graphics and Image Processing, Vol. 15, 1981, S. 167–181.CrossRefGoogle Scholar
  60. [108]
    Wang, D., Wang, Q.: A weighted averaging method for image smoothing, Proc. 8th ICPR, Paris, 1988, S. 981–983.Google Scholar
  61. [109]
    Wang, X., Wang, D.: On the max/median filter, IEEE Trans., Vol. ASSP-38, Aug. 1990, S. 1473–1475.Google Scholar
  62. [110]
    Xia, Y.: Skeletonization via the realization of the fire front’s propagation and extinction in digital binary shapes, IEEE Trans., Vol. PAMI-11, Oct. 1989, S. 1076–1086.Google Scholar
  63. [111]
    Yokoi S., Toriwaki, J., Fukumura, T.: An analysis of topological properties of digitized binary pictures using local features, Computer Graphics and Image Processing, Vol. 4, 1975, S. 63–73.MathSciNetCrossRefGoogle Scholar
  64. [112]
    Zamperoni, P.: An agglomerative approach to modeling and segmentation of aerial views, in: Proc. MARI-87, Paris, Mai 1987, S. 426–431.Google Scholar
  65. [113]
    Zamperoni, P.: An automatic low-level segmentation procedure for remote sensing images, Multidimensional Systems and Signal Processing, Vol. 3, 1992, S. 29–44.CrossRefGoogle Scholar
  66. [114]
    Zamperoni, P.: Feature extraction by rank-order filtering for image segmentation, International Journal of Pattern Recognition and Artificial Intelligence, Vol. 2, 1988, N. 2, S. 301–319.CrossRefGoogle Scholar
  67. [115]
    Zamperoni, P.: Variations on the rank-order filtering theme for grey-tone and binary image enhancement, in: Proc. ICASSP′89, Glasgow, Mai 1989, S. 1401–1404.Google Scholar
  68. [116]
    Hufnagl, P., Schlosser, A., Voss, K.: Ein Algorithmus zur Konstruktion von Voronoidiagramm und Delaunaygraph, Bild und Ton 38 (1985), Heft 8, S. 241–245.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig / Wiesbaden 1992

Authors and Affiliations

  • Reinhard Klette
  • Piero Zamperoni

There are no affiliations available

Personalised recommendations