Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 50))

Summary

In this paper we present cubature methods for the approximation of surface integrals arising from Galerkin discretizations of 3-d boundary integral equations. This numerical integrator is fully implicit in the sense that the form of the kernel function, the surface parametrization, the trial and test space, and the order of the singularity of the kernel function is not used explicitly. Different kernels can be treated by just replacing the subroutine which evalutes the kernel function in certain surface points.

Furthermore, the implementation of the integrator is relatively easy since it can be checked on simple test kernels as, e.g., polynomials where the exact integrals are available.

We discuss the convergence of the cubature methods together with a stability and consistency analysis in order to determine the minimal cubature orders a priori.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ADAMS, R.: Sobolev Spaces. Academic Press, N.Y., 1975.

    Google Scholar 

  2. COOLS, R. and RABINOWITZ, P.: Monomial Cubature Rules since “Stroud”: A Compilation. J. Comput. Appl. Math. 48:309–326, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  3. GENG, P., ODEN, J., and DEMKOWICZ L.: Solution of Exterior Acoustic Problems by the Boundary Element Method at High Wave Numbers, Error Estimation and Parallel Computation. Technical Report 95–09, TICAM, The University of Texas at Austin, 1995.

    Google Scholar 

  4. HACKBUSCH, W. and SAUTER, S.A.: On the Efficient Use of the Galerkin Method to Solve Fredholm Integral Equations. Applications of Mathematics 38(4–5):301–322, 1993.

    MathSciNet  MATH  Google Scholar 

  5. HAN, H.: A Boundary Element Method for Signorini Problems in Three Dimensions. Numer. Math., 60:63–76, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  6. HAN, H.: The Boundary Element Method for Solving Variational Inequalities. Contemp. Math. 163, 1994.

    Google Scholar 

  7. HAN, H.: The Boundary Integro-Differential Equations of Three-Dimensional Neuman Problem in Linear Elasticity. Numer. Math. 68(2):269–281, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  8. LAGE, C.: Software Development for Boundary Element Mehtods: Analysis and Design of Efficient Techniques (in German). PhD thesis, Lehrstuhl Prakt. Math., Universität Kiel, 1995.

    Google Scholar 

  9. LAGE, C. and SAUTER, S.: Analysis and Software Design Aspects of Advanced Algorithms in Boundary Element Methods. Wiley, planned for 1996.

    Google Scholar 

  10. NEDELEC, J.C.: Integral Equations with Non Integrable Kernels. Integral Equations Oper. Theory 5:562–572, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. PETERSDORFF, T. and SCHWAB, C.: Fully Discrete Multiscale Galerkin BEM. Technical Report 95–08, Seminar for Applied Mathematics, ETH Zürich, 1995.

    Google Scholar 

  12. SAUTER, S.A.: Über die effiziente Verwendung des Galerkinverfahrens zur Lösung Fred-holmscher Integralgleichungen. PhD thesis, Lehrstuhl, f. Prakt. Math., Universität Kiel, 1992.

    Google Scholar 

  13. SAUTER, S.A. and KRAPP, A.: On the Effect of Numerical Integration in the Galerkin Boundary Element Method.Technical Report 95–4, Lehrstuhl Praktische Mathematik, Universität Kiel, Germany, 1995, to appear in Numer. Math.

    Google Scholar 

  14. SAUTER, S.A. and SCHWAB, C.: Realization of hp-Galerkin BEM in 3-d. In HACKBUSCH, W. and WITTUM, G., editors, BEM: Implementation and Analysis of Advanced Algorithms, Proceedings of the 12th GAMM-Seminar, Kiel. Verlag Vieweg, 1996.

    Google Scholar 

  15. SAUTER, S.A. and SCHWAB, C.: Quadrature for hp-Galerkin BEM in 3-d. Technical report 96–02, Seminar for Appl. Math., ETH Zürich, 1996.

    Google Scholar 

  16. SCHWAB, C. and WENDLAND, W.: Kernel Properties and Representations of Boundary Integral Operators. Math. Nachr. 156:187–218, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  17. STROUD A.H.: Approximate Calculations of Multiple Integrals. Prentice Hall, Engle-wood Cliffs, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Sauter, S.A. (1996). Cubature Techniques for 3-D Galerkin Bem. In: Hackbusch, W., Wittum, G. (eds) Boundary Elements: Implementation and Analysis of Advanced Algorithms. Notes on Numerical Fluid Mechanics (NNFM), vol 50. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-89941-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89941-5_2

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-89943-9

  • Online ISBN: 978-3-322-89941-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics