Summary
In this paper we present cubature methods for the approximation of surface integrals arising from Galerkin discretizations of 3-d boundary integral equations. This numerical integrator is fully implicit in the sense that the form of the kernel function, the surface parametrization, the trial and test space, and the order of the singularity of the kernel function is not used explicitly. Different kernels can be treated by just replacing the subroutine which evalutes the kernel function in certain surface points.
Furthermore, the implementation of the integrator is relatively easy since it can be checked on simple test kernels as, e.g., polynomials where the exact integrals are available.
We discuss the convergence of the cubature methods together with a stability and consistency analysis in order to determine the minimal cubature orders a priori.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
ADAMS, R.: Sobolev Spaces. Academic Press, N.Y., 1975.
COOLS, R. and RABINOWITZ, P.: Monomial Cubature Rules since “Stroud”: A Compilation. J. Comput. Appl. Math. 48:309–326, 1993.
GENG, P., ODEN, J., and DEMKOWICZ L.: Solution of Exterior Acoustic Problems by the Boundary Element Method at High Wave Numbers, Error Estimation and Parallel Computation. Technical Report 95–09, TICAM, The University of Texas at Austin, 1995.
HACKBUSCH, W. and SAUTER, S.A.: On the Efficient Use of the Galerkin Method to Solve Fredholm Integral Equations. Applications of Mathematics 38(4–5):301–322, 1993.
HAN, H.: A Boundary Element Method for Signorini Problems in Three Dimensions. Numer. Math., 60:63–76, 1991.
HAN, H.: The Boundary Element Method for Solving Variational Inequalities. Contemp. Math. 163, 1994.
HAN, H.: The Boundary Integro-Differential Equations of Three-Dimensional Neuman Problem in Linear Elasticity. Numer. Math. 68(2):269–281, 1994.
LAGE, C.: Software Development for Boundary Element Mehtods: Analysis and Design of Efficient Techniques (in German). PhD thesis, Lehrstuhl Prakt. Math., Universität Kiel, 1995.
LAGE, C. and SAUTER, S.: Analysis and Software Design Aspects of Advanced Algorithms in Boundary Element Methods. Wiley, planned for 1996.
NEDELEC, J.C.: Integral Equations with Non Integrable Kernels. Integral Equations Oper. Theory 5:562–572, 1982.
V. PETERSDORFF, T. and SCHWAB, C.: Fully Discrete Multiscale Galerkin BEM. Technical Report 95–08, Seminar for Applied Mathematics, ETH Zürich, 1995.
SAUTER, S.A.: Über die effiziente Verwendung des Galerkinverfahrens zur Lösung Fred-holmscher Integralgleichungen. PhD thesis, Lehrstuhl, f. Prakt. Math., Universität Kiel, 1992.
SAUTER, S.A. and KRAPP, A.: On the Effect of Numerical Integration in the Galerkin Boundary Element Method.Technical Report 95–4, Lehrstuhl Praktische Mathematik, Universität Kiel, Germany, 1995, to appear in Numer. Math.
SAUTER, S.A. and SCHWAB, C.: Realization of hp-Galerkin BEM in 3-d. In HACKBUSCH, W. and WITTUM, G., editors, BEM: Implementation and Analysis of Advanced Algorithms, Proceedings of the 12th GAMM-Seminar, Kiel. Verlag Vieweg, 1996.
SAUTER, S.A. and SCHWAB, C.: Quadrature for hp-Galerkin BEM in 3-d. Technical report 96–02, Seminar for Appl. Math., ETH Zürich, 1996.
SCHWAB, C. and WENDLAND, W.: Kernel Properties and Representations of Boundary Integral Operators. Math. Nachr. 156:187–218, 1992.
STROUD A.H.: Approximate Calculations of Multiple Integrals. Prentice Hall, Engle-wood Cliffs, 1973.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden
About this chapter
Cite this chapter
Sauter, S.A. (1996). Cubature Techniques for 3-D Galerkin Bem. In: Hackbusch, W., Wittum, G. (eds) Boundary Elements: Implementation and Analysis of Advanced Algorithms. Notes on Numerical Fluid Mechanics (NNFM), vol 50. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-89941-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-322-89941-5_2
Publisher Name: Vieweg+Teubner Verlag
Print ISBN: 978-3-322-89943-9
Online ISBN: 978-3-322-89941-5
eBook Packages: Springer Book Archive