Realization of hp-Galerkin BEM in ℝ3

  • Stefan A. Sauter
  • Christoph Schwab
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM, volume 50)


It is well known that Galerkin discretizations based on hp-Finite Element Spaces are converging exponentially with respect to the degrees of freedom for elliptic problems with piecewise analytic data. However, the question whether these methods can be realized for general situations such that the exponential convergence is preserved also with respect to the computing time is very essential.

In this paper, we will show how the numerical quadrature can be realized in order that the resulting fully discrete hp-Boundary Element Method converges exponentially with algebraically growing work. The key point is to approximate the integrals constituting the stiffness matrix by exponentially converging cubature methods.


Boundary Element Method Fredholm Integral Equation Exponential Convergence Finite Element Space Numerical Quadrature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic Press, 1984.Google Scholar
  2. [2]
    J. Elschner. The Double Layer Potential Operator over Polyhedral Domains II: Spline Galerkin Methods. Math. Meth. Appl. Sci., 15:23–37, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    J. Elschner. On the Exponential Convergence of some Boundary Element Methods for Laplace’s Equation in Nonsmooth Domains. In M. Costabel, M. Dauge, and S. Nicaise, editors, Boundary Value Problems and Integral Equations in Nonsmooth Domains, New York, 1995. Marcel Dekker.Google Scholar
  4. [4]
    B. Guo and I. Babuska. The hp-Version of the Finite Element Method. Part i: The Basic Approximation Results. Computational Mechanics, 1:21–41, 1986.zbMATHCrossRefGoogle Scholar
  5. [5]
    B. Guo and I. Babuska. The hp-Version of the Finite Element Method. Part II: General Results and Applications. Computational Mechanics, 1:203–220, 1986.zbMATHCrossRefGoogle Scholar
  6. [6]
    W. Hackbusch. Integral Equations. ISNM 120, Birkhäuser Publ. Basel, 1995.zbMATHCrossRefGoogle Scholar
  7. [7]
    W. Hackbusch and S. Sauter. On the Efficient Use of the Galerkin Method to Solve Fredholm Integral Equations. Applications of Mathematics, 38(4–5):301–322, 1993.MathSciNetzbMATHGoogle Scholar
  8. [8]
    H. Han. The Boundary Integro-Differential Equations of Three-Dimensional Neuman Problem in Linear Elasticity. Numer. Math., 68(2):269–281, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    C. Lage. Software Development for Boundary Element Mehtods: Analysis and Design of Efficient Techniques (in German). PhD thesis, Lehrstuhl Prakt. Math., Universität Kiel, 1995.Google Scholar
  10. [10]
    M. Maischak and E. Stephan. The hp-Version of the Boundary Element Method in R3 — the Basic Approximation Results. Math. Meth. Appl. Sci, to appear, 1996.Google Scholar
  11. [11]
    J. Nédélec. Integral Equations with Non Integrable Kernels. Integral Equations Oper. Theory, 5:562–572, 1982.zbMATHCrossRefGoogle Scholar
  12. [12]
    S. Sauter. Cubature Techniques for 3-d Galerkin BEM. In W. Hackbusch and G. Wittum, editors, BEM: Implementation and Analysis of Advanced Algorithms. Vieweg Verlag, 1996.Google Scholar
  13. [13]
    S. A. Sauter. Über die effiziente Verwendung des Galerkinverfahrens zur Lösung Fredholmscher Integralgleichungen. PhD thesis, Inst. f. Prakt. Math., Universität Kiel, 1992.zbMATHGoogle Scholar
  14. [14]
    S. A. Sauter and A. Krapp. On the Effect of Numerical Integration in the Galerkin Boundary Element Method. Technical Report 95–4, Lehrstuhl Praktische Mathematik, Universität Kiel, Germany, 1995, to appear in Numer. Math.Google Scholar
  15. [15]
    S. A. Sauter and C. Schwab. Quadrature for hp-Galerkin BEM in 3-d. Technical Report 96–02, Seminar for Appl. Math., ETH Zürich, March 1996.Google Scholar
  16. [16]
    C. Schwab. Variable order composite quadrature of singular and nearly singular integrals. Computing, 53:173–194, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    C. Schwab and W. Wendland. Kernel Properties and Representations of Boundary Integral Operators. Math. Nachr., 156:187–218, 1992.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996

Authors and Affiliations

  • Stefan A. Sauter
    • 1
  • Christoph Schwab
    • 2
  1. 1.Lehrstuhl für Praktische Mathematik Mathematisches Seminar Bereich IIChristian-Albrechts Universität zu KielKielGermany
  2. 2.Seminar für Angewandte MathematikETH ZürichZürichSwitzerland

Personalised recommendations