Reconstruction of Surfaces from Three-Dimensional Point Clouds

  • Robert Mencl

Abstract

The difficulties in modeling complex objects for engineering, medicine or computer animation lead to the use of automatic range scanning systems which provide point data on the object’s surface. The computation of a surface out of this point data is referred to as surface reconstruction. The resulting surface is usually represented as a triangular mesh, but other representations like B-spline patches or implicit surface descriptions are also possible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Algorri, M.-E.; Schmitt, F.: Surface Reconstruction from Unstructured 3D Data. Computer Graphics forum 15 (1996) 1 47–60CrossRefGoogle Scholar
  2. [2]
    Attali, D.: r-regular Shape Reconstruction from Unorganized Points. In: ACM Symposium on Computational Geometry. 1997 pp. 248–253. Nice, PranceGoogle Scholar
  3. [3]
    Baader, A.: Ein Umwelterfassungssystem für multisensorielle Montageroboter. Dissertation, Universität der Bundeswehr, Munich, Germany 1995. Fortschrittberichte, VDI Reihe 8 Nr. 486, ISBN 3–18–3 48608 – 3, ISSN 0178–9546, (in German)Google Scholar
  4. [4]
    Baader, A.; Hirzinger, G.: Three-Dimensional Surface Reconstruction Based On A Self-Organizing Feature Map. In: Proc. 6th Int. Conf. Ad-van. Robotics. 1993 S. 273–278. TokyoGoogle Scholar
  5. [5]
    Baader, A.; Hirzinger, G.: A Self-Organizing Algorithm for Multisensory Surface Reconstruction. In: International Conf. on Robotics and Intelligent Systems IROS’94 1994 Munich, GermanyGoogle Scholar
  6. [6]
    Bajaj, C.; Bernardini, F.; Xu, G.: Reconstructing surfaces and functions on surfaces from unorganized 3D data. Algorithmica 19 (1997) 243–261MathSciNetCrossRefGoogle Scholar
  7. [7]
    Bajaj, C.; Schikore, D.: Error-bounded reduction of triangle meshes with multivariate data. In: Proceedings of SPIE Symposium on Visual Data Exploration and Analysis III. 1996 pp. 34–45. SPIECrossRefGoogle Scholar
  8. [8]
    Bajaj, C. L.; Bernardini, F.; Xu, G.: Automatic Reconstruction of Surfaces and Scalar Fields from 3D Scans. Computer Graphics Proceedings, SIGGRAPH’95, Annual Conference Series (1995) 109–118Google Scholar
  9. [9]
    Bernardini, F.: Automatic Reconstruction of CAD Models and Properties from Digital Scans. Dissertation, Department of Computer Science, Purdue University 1996Google Scholar
  10. [10]
    Bernardini, F.; Bajaj, C.: Sampling and Reconstructing Manifolds using Alpha-Shapes. In: Proc. of the Ninth Canadian Conference on Computational Geometry. 1997 pp. 193–198. Also available as: Technical Report CSD-97–013, Department of Computer Sciences, Purdue University, 1997Google Scholar
  11. [11]
    Bernardini, F.; Bajaj, C.; Chen, J.; Schikore, D. R.: Automatic Reconstruction of 3D CAD Models from Digital Scans. Submitted for publication (1997). Also available as: Technical Report CSD-97–012, Department of Computer Sciences, Purdue University, 1997Google Scholar
  12. [12]
    Bittar, E.; Tsingos, N.; Gascuel, M.-P.: Automatic Reconstruction of Unstructured Data: Combining a Medial Axis and Implicit Surfaces. Computer Graphics forum 14 (1995) 3 457–468. Proceedings of EUROGRAPHICS’95CrossRefGoogle Scholar
  13. [13]
    Boissonnat, J.-D.: Geometric Structures for Three-Dimensional Shape Representation. ACM Transactions on Graphics 3 (October 1984) 4 266–286CrossRefGoogle Scholar
  14. [14]
    Duda, R. O.; Hart, P. E.: Pattern Classification and Scene Analysis. Wiley and Sons, Inc. 1973MATHGoogle Scholar
  15. [15]
    Edelsbrunner, H.: Weighted alpha shapes 1992. Technical Report UIUCDCS-R-92–1760, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IllinoisGoogle Scholar
  16. [16]
    Edelsbrunner, H.; Mücke, E.: Three-dimensional alpha shapes. ACM Transactions on Graphics 13 (1994) 1 43–72. Also as Technical Report UIUCDCS-R-92–1734, Department of Computer Science, 1992, University of Illinois at Urbana-ChampaignCrossRefMATHGoogle Scholar
  17. [17]
    Fua, P.; Sander, P. T.: From Points to Surfaces. In: B. C. Vemuri (Hrsg.), Geometric Methods in Computer Vision. Proc. SPIE Vol. 1570, 1991 pp. 286–296CrossRefGoogle Scholar
  18. [18]
    Fua, P.; Sander, P. T.: Reconstructing Surfaces from Unstructured 3D Points. In: Proc. Image Understanding Workshop. San Diego, CA, 1992 pp. 615–625Google Scholar
  19. [19]
    Fua, P.; Sander, P. T.: Segmenting Unstructured 3D Points into Surfaces. In: G. Sandini (Hrsg.), Computer Vision: ECCV’92, Proc. Second European Conference on Computer Vision. Santa Margherita Ligure, Italy: Springer, 1992 pp. 676–680Google Scholar
  20. [20]
    Guo, B.; Menon, J.; Willette, B.: Surface Reconstruction Using Alpha-Shapes. Computer Graphics forum Vol. 16 (October 1997) No. 4 177–190CrossRefGoogle Scholar
  21. [21]
    Herman, G. T.; Liu, H. K.: Three-Dimensional Displays of Human Organs from Computed Tomograms. Computer Graphics and Image Processing 9 (January 1979) 1–21CrossRefGoogle Scholar
  22. [22]
    Hoppe, H.: Surface Reconstruction from Unorganized Points. Dissertation, Univ. of Washington, Seattle WA 1994Google Scholar
  23. [23]
    Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W.: Surface Reconstruction from Unorganized Points. Computer Graphics 26 (July 1992) 2 71–78. Proceedings of Siggraph’92CrossRefGoogle Scholar
  24. [24]
    Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W.: Mesh Optimization. In: Computer Graphics Proceedings, Annual Conference Series. New York: ACM Siggraph, 1993 pp. 21–26. Proceedings of Siggraph’93Google Scholar
  25. [25]
    Isselhard, F.; Brunnett, G.; Schreiber, T.: Polyhedral Reconstruction of 3D Objects by Tetrahedra Removal. Techn. Ber., Fachbereich Informatik, University of Kaiserslautern, Germany February 1997. Internal Report No. 288/97Google Scholar
  26. [26]
    Lorensen, W. E.; Cline, H. E.: Marching Cubes: A high resolution 3D surface construction algorithm. Computer Graphics 21 (July 1987) 4 163–169CrossRefGoogle Scholar
  27. [27]
    Mencl, R.: A Graph-Based Approach to Surface Reconstruction. Computer Graphics forum 14 (1995) 3 445–456. Proceedings of EUROGRAPHICS’95, Maastricht, The Netherlands, August 28 — September 1, 1995CrossRefGoogle Scholar
  28. [28]
    Mencl, R.; Müller, H.: Graph-Based Surface Reconstruction Using Structures in Scattered Point Sets. In: Proceedings of CGI’98 (Computer Graphics International), Hannover, Germany, June 22th-26th 1998. 1998 pp. 298–311. Similar version also available as Research Report No. 661, 1997, Fachbereich Informatik, Lehrstuhl VII, University of Dortmund, GermanyGoogle Scholar
  29. [29]
    Mücke, E. P.: Shapes and implementations in three-dimensional geometry. Dissertation, Department of Computer Science, University of Illinois at Urbana-Champaign September 1993Google Scholar
  30. [30]
    Preparata, F. P.; Shamos, M. I.: Computational Geometry: An Introduction. Springer Verlag 1985Google Scholar
  31. [31]
    Roth, G.; Wibowoo, E.: An Efficient Volumetric Method for Building Closed Triangular Meshes from 3-D Image and Point Data. In: Graphics Interface’97. 1997 pp. 173–180Google Scholar
  32. [32]
    Schreiber, T.: Approximation of 3D Objects. In: Proceedings of the 3rd Conference on Geometric Modeling. Dagstuhl, Germany, 1997 Accepted for a supplementary issue of the journal Computing (Springer Verlag)Google Scholar
  33. [33]
    Schreiber, T.; Brunnett, G.: Approximating 3D Objects from Measured Points. In: Proceedings of 30th ISATA. Florence, Italy, 1997Google Scholar
  34. [34]
    Veltkamp, R. C.: Closed Object Boundaries from Scattered Points. In: Lecture Notes in Computer Science 885. Springer Verlag, 1994Google Scholar
  35. [35]
    Veltkamp, R. C.: Boundaries through Scattered Points of Unknown Density. Graphics Models and Image Processing 57 (November 1995) 6 441–452CrossRefMATHGoogle Scholar
  36. [36]
    Weller, F.: Stability of Voronoi Neighborship under Perturbations of the Sites. In: Proceedings 9th Canadian Conference on Computational Geometry. 1997 Kingston, Ontario, Canada, August 11–14Google Scholar
  37. [37]
    Weller, F.; Mencl, R.: Nearest Neighbour Search for Visualization Using Arbitrary Triangulations. In: M. Göbel; J. David; P. Slavik; J. J. van Wijk (Hrsg.), Virtual Environments and Scientific Visualization’96. Springer Verlag New York, 1996 pp. 191–200CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1999

Authors and Affiliations

  • Robert Mencl
    • 1
  1. 1.Informatik VII (Computer Graphics)Universität DortmundDeutschland

Personalised recommendations