Numerical Turbulence Simulation on a Parallel Computer Using the Combination Method

  • M. Griebel
  • W. Huber
  • C. Zenger
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM, volume 48)


The parallel numerical solution of the Navier-Stokes equations with the sparse grid combination method was studied. This algorithmic concept is based on the independent solution of many problems with reduced size and their linear combination. The algorithm for three-dimensional problems is described and its application to turbulence simulation is reported. Statistical results on a pipe flow for Reynolds number Re cl = 6950 are presented and compared with results obtained from other numerical simulations and physical experiments. Its parallel implementation on an IBM SP2 computer is also discussed.


Direct Numerical Simulation Combination Method Sparse Grid Turbulent Pipe Flow Distorted Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Barros, Optimierte Mehrgitterverfahren für zwei-und dreidimensionale elliptische Randwertaufgaben in Kugelkoordinaten, GMD Bericht Nr.178, R. Oldenbourg Verlag, München, Wien Nr.178, 1989.Google Scholar
  2. [2]
    H. Bungartz, Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung, Dissertation, Institut für Informatik, TU München, 1992.Google Scholar
  3. [3]
    H. Bungartz AND W. Huber, First experiments with turbulence simulation on workstation networks using sparse grid methods, in Notes on Numerical Fluid Mechanics: Computational Fluid Dynamics on Parallel Systems, S. Wagner, ed., Vieweg, 1995.Google Scholar
  4. [4]
    J. Burmeister AND W. Hackbusch, On a time and space parallel multi-grid method including remarks on filtering techniques, in this publication, Vieweg, 1996.Google Scholar
  5. [5]
    J. Eggels, F. Unger, M. Weiss, J. Westerweel, R. Adrian, R. Friedrich, AND F. Nieuwstadt, Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiments, Journal of Fluid Mechanics, 268, pp. 175–209, (1994).CrossRefGoogle Scholar
  6. [6]
    M. Griebel, Parallel Multigrid Methods on Sparse Grids, International Series of Numerical Mathematics, 98 (1991), pp. 211–221.MathSciNetGoogle Scholar
  7. [7]
    -, A parallelizable and vectorizable multi-level algorithm on sparse grids, in Proceedings of the Sixth GAMM-Seminar, W. Hackbusch, ed., vol. 31, Vieweg, Braunschweig, Notes on Numerical Fluid Mechanics, 1991, pp. 94–100.Google Scholar
  8. [8]
    M. Griebel, W. Huber, U. Rüde, AND T. Störtkuhl, The combination technique for parallel sparse-grid-preconditioning and-solution of PDEs on multiprocessor machines and workstation networks, in Proceedings of the Second Joint International Conference on Vector and Parallel Processing CONPAR/VAPP V 92, 634, pp. 217–228, L. Bougé, M. Cosnard, Y. Robert, D. Trystram, ed., Springer Verlag, Berlin, Heidelberg, New York, 1992.Google Scholar
  9. [9]
    M. Griebel, W. Huber, T. Störtkuhl, AND C. Zenger, On the parallel solution of 3D PDEs on a network of workstations and on vector computers, in Lecture Notes in Computer Science, 732, pp. 276–291, Computer Architecture: Theory, Hardware, Software, Applications, A. Bode and M. Dal Cin, ed., Springer Verlag, Berlin, Heidelberg, New York, 1993.Google Scholar
  10. [10]
    M. Griebel, M. Schneider, AND C. Zenger, A combination technique for the solution of sparse grid problems, in Proceedings of the IMACS International Symposium on Iterative Methods in Linear Algebra, pp. 263–281, P. de Groen and R. Beauwens, ed., Elsevier, Amsterdam, 1992.Google Scholar
  11. [11]
    W. Huber, Turbulenzsimulation mit der Kombinationsmethode auf Workstation-Netzen und Parallelrechnern, Dissertation, Institut für Informatik, TU München, 1996.Google Scholar
  12. [12]
    M. Manhart and H. Wengle, Large-eddy simulation and eigenmode decomposition of turbulent boundary layer flow over a hemisphere, in this publication, Vieweg, 1996.Google Scholar
  13. [13]
    L. Schmitt, Numerische Simulation Turbulenter Grenzschichten, Tech. Report 82/2, Lehrstuhl für Fluidmechanik, TU München, 1982.Google Scholar
  14. [14]
    G. Smith, Numerische Lösung von partiellen Differentialgleichungen, Vieweg Verlag, Braunschweig, 1970.Google Scholar
  15. [15]
    F. Unger, Numerische Simulation turbulenter Rohrströmungen, Dissertation, Lehrstuhl für Fluidmechanik, TU München, 1994.Google Scholar
  16. [16]
    C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, Kiel, 1990, Notes on Numerical Fluid Mechanics, 31, W. Hackbusch, ed., Vieweg, Braunschweig, 1991.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996

Authors and Affiliations

  • M. Griebel
    • 1
  • W. Huber
    • 1
  • C. Zenger
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMünchenGermany

Personalised recommendations