Investigations of Hypersonic Flows past Blunt Bodies at Angle of Attack

  • S. Brück
  • G. Brenner
  • D. Rues
  • D. Schwamborn
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM, volume 48)


The hypersonic, chemically reacting flow past a generic HERMES geometry is simulated numerically. Interest is focused on the influence of the modeling of chemical kinetics and the dynamics of energy exchange in flows with complex viscous and inviscid interactions such as shock/boundary- layer and shock/shock interactions. Results for the axisymmetric flow past a flared hyperboloid are obtained with the NSHYP code to study the principal effects and to validate the present model by comparing with Direct Monte Carlo Simulations and experimental results obtained in the high enthalpy wind tunnel HEG. Furthermore, the generic shape of a double ellipsoid is chosen to demonstrate the performance of the CEVCATS code for three-dimensional simulations.


Direct Simulation Monte Carlo Leeward Side Hypersonic Flow Direct Simulation Monte Carlo Method Thermal Nonequilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Bergemann. Gaskinetische Simulation von kontinuumsnahen Hyperschallströmungen unter Berücksichtigung von Wandkatalyse. DLR-FB 94-30, Göttingen, 1994.Google Scholar
  2. [2]
    F.G. Blottner, M. Johnson, and M. Ellis. Chemically Reacting Viscous Flow Program for Multi-Component Gas Mixtures. Technical Report: SC-RR-70-754, SANDIA, 1971.Google Scholar
  3. [3]
    G. Brenner. Numerische Simulation von Wechselwirkungen zwischen Stößen und Grenzschichten in chemisch reagierenden Hyperschallströmungen. DLR-FB 94-04, Göttingen, 1994.Google Scholar
  4. [4]
    G. Brenner, W. Kordulla, and S. Brück. Further Simulations of Flows Past Hyperboloid-Flare Configurations. DLR IB 221-93 A 13, Göttingen, 1993.Google Scholar
  5. [5]
    J.-A. Désidéri, R. Glowinski, and J. Périaux, (eds.) Hypersonic Flows for Reentry Problems, Volume I-III. Springer, Heidelberg, 1990/91.Google Scholar
  6. [6]
    D. Kastell and G. Eitelberg. Flow Visualization in High Temperature, High Velocity Flows with a combined Holographic Interferometer and Laser-Schlieren System. In Proc. of 7th Int. Symp. on Flow Visualization (ISFV), Seattle WA, September 1995.Google Scholar
  7. [7]
    N. Kroll and R. Radespiel. An Improved Flux Vector Split Discretization Scheme for Viscous Flows. DLR-FB 93-53, Braunschweig, 1994.Google Scholar
  8. [8]
    R.C. Millikan and D.R. White. Systematics of Vibrational Relaxation. Journal of Chemical Physics, 139:3209–3212, 1963.CrossRefGoogle Scholar
  9. [9]
    C. Park. Nonequilibrium Hypersonic Aerothermodynamics. John Wiley & Sons, New York, 1989.Google Scholar
  10. [10]
    S. Riedelbauch. Aerothermodynamische Eigenschaften von Hyperschallströmungen über strah-lungsadiabate Oberflächen. DLR-FB 91-42, Göttingen, 1992.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996

Authors and Affiliations

  • S. Brück
    • 1
  • G. Brenner
    • 1
  • D. Rues
    • 1
  • D. Schwamborn
    • 1
  1. 1.DLR Institute of Fluid MechanicsGöttingenGermany

Personalised recommendations