Three-Dimensional Numerical Simulation of the Aerothermodynamic Reentry

  • E. Laurien
  • J. Wiesbaum
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM, volume 48)


The aerothermodynamics of a spacecraft under the conditions of reentry into the earth’ atmosphere is simulated numerically. The present method uses an unstructured tetrahedral grid with adaptive refinement to resolve local relaxation areas in the flow. Results for the geometry of an elliptical forebody at 30 deg. angle of attack are obtained under radiation adiabatic noncatalytic or fully catatylic wall conditions. Implementation and efficiency aspects of this method on high-performance computers are investigated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Oertel Jr., M. Böhle, J. Delfs, D. Hafermann und H. Holthoff: Aerothermodynamik, Springer-Verlag, Berlin, 1994.Google Scholar
  2. [2]
    J.D. Anderson Jr.: Hypersonic and High Temperature Gas Dynamics, McGraw-Hill, New York, 1989.Google Scholar
  3. [3]
    C. Park: Nonequilibrium Hypersonic Aerothermodynamics, John Wiley and Sons, New York 1990.Google Scholar
  4. [4]
    J. Wiesbaum: Dreidimensionale Numerische Simulation des aerothermodynamischen Wiedereintritts im kontinuumsmechanischen Bereich, Dissertation, Technische Universität Braunschweig, ZLR-Bericht 95-03, 1995.Google Scholar
  5. [5]
    H. Holthoff: Numerische Simulation des Wärmeübergangs in Hyperschallströmungen, Dissertation, Technische Universität Braunschweig, ZLR-Bericht, 1995.Google Scholar
  6. [6]
    E. Laurien, M. Böhle, H. Holthoff und J. Wiesbaum: Modelluntersuchungen zur numerischen Berechnung von Wiedereintrittsströmungen, DGLR-Jahrbuch I, 613–620, 1991.Google Scholar
  7. [7]
    E. Laurien, M. Böhle, H. Holthoff und J. Wiesbaum: Numerische Simulation von Wiedereintrittsströmungen mit dem Taylor-Galerkin Finite-Elemente Verfahren, DGLR-Kongreß 28.9–1.10 1993, Göttingen.Google Scholar
  8. [8]
    D. F. Watson: Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes, The Computer Journal Vol. 24 NO. 2 167–172 1981.MathSciNetCrossRefGoogle Scholar
  9. [9]
    R. Löhner, K. Morgan, and O.C. Zienkiewicz: An Adaptive Finite-Element Procedure for Compressible High Speed Flows, Comp. Meth. Appl. Mech. and Eng. 51, 441–465 (1985).zbMATHCrossRefGoogle Scholar
  10. [10]
    R. Löhner: Finite-Element Flux-Corrected-Transport (FEM-FCT) for Euler and Navier-Stokes Equations, International Journal for Numerical Methods in Fluids 7, 1093–1109 (1987).zbMATHCrossRefGoogle Scholar
  11. [11]
    K. Morgan, J. Peraire: Finite-Element Methods for Compressible Flows, VKI-LS 1987-04, 1987.Google Scholar
  12. [12]
    M. Lötzerich: Beitrag zur Strömungsberechnung in Turbomaschinen mit Hilfe der Methode der Finiten-Elemente, Dissertation, RWTH Aachen, 1987.Google Scholar
  13. [13]
    A. Vornberger: Strömungsberechnung auf unstrukturierten Netzen mit der Methode der Finiten-Elemente, Dissertation, RWTH Aachen, 1989.Google Scholar
  14. [14]
    E. Laurien, M. Böhle, H. Holthoff, J. Wiesbaum, and A. Lieseberg: Finite-Element Algorithm for Chemically Reacting Hypersonic Flows, AIAA 92-0754 (1992).Google Scholar
  15. [15]
    J. Wiesbaum, H. Holthoff, E. Laurien und W. Rönsch: Experiences with the Taylor-Galerkin Finite-Element Method for Hypersonic Aerothermodynamics on Supercomputers, in: E. H. Hirschel (ed.): Flow Simulation with High-Performance Computers I, Notes on Numerical Fluid Mechanics 38, 379–392, Vieweg, Braunschweig 1993.Google Scholar
  16. [16]
    G.V. Candler R.W. MacCormack: The Computation of Hypersonic Ionized Flows in Chemical and Thermal Nonequilibrium, AIAA 88-0511, 1988.Google Scholar
  17. [17]
    A. Klomfaß, S. Müller, J. Ballmann: Modellierung Hypersonischer Strömungen, Sonderforschungsbereich 253, Inst. f. Geometrie u. Praktische Mathematik, RWTH Aachen, 1993.Google Scholar
  18. [18]
    J. Erhel: Finite-Element Methods on Parallel and Vector Computers, Application in Fluid Dynamics, Proceedings of the International Conference on Supercomputing, Athens 1987, Springer, Heidelberg, New York, 1988, 768–781.Google Scholar
  19. [19]
    W. Rönsch, J. Wiesbaum, H. Holthoff, and E. Laurien: Parallelization of the Taylor-Galerkin Finite-Element Method for Shared Memory Vector Multiprocessors, Proc. 1993 Summer Meeting of ASME Fluid Engineering Division’ CFD Algorithms and Applications for Parallel Processors’, June 21–23, 1993.Google Scholar
  20. [20]
    Agarwal and J.C. Lewis: Computational Fluid Dynamics on Parallel Processors, Computing Systems in Engineering 3, 251–259 (1992).CrossRefGoogle Scholar
  21. [21]
    A.F. Junior and M.F. Ahmad: PERFES-Parallel Finite-Element Solvers for Flow-Induced Fracture, Computing Systems in Engineering 3, 379–392 (1992).CrossRefGoogle Scholar
  22. [22]
    E. Laurien: Parallelisierung adaptiver Simulationsverfahren in der Strömungsmechanik, Proc. Workshop über Wissenschaftliches Rechnen, 2.–4. Juni 1993, Braunschweig.Google Scholar
  23. [23]
    H. Oertel Jr. und E. Laurien: Numerische Strömungsmechanik, Springer-Verlag, Berlin, 1995.zbMATHCrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996

Authors and Affiliations

  • E. Laurien
    • 1
  • J. Wiesbaum
    • 1
  1. 1.Institute for Fluid MechanicsTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations