Advertisement

Computational Aspects of Flow Simulation on 3-D, Unstructured, Adaptive Grids

  • R. Vilsmeier
  • D. Hänel
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM, volume 48)

Summary

Solution concepts on unstructured, adaptive grids for the 3-D Navier-Stokes equations are considered. The solution scheme is a finite-volume method with upwind or central discretization of inviscid fluxes and explicit integration in time. Generation of tetrahedral meshes and their adaption are based on a common algorithm. Several numerical and hardware aspects for different discretization and data structures are analysed and discussed. A perspective is given for future extension towards hybrid grid concepts.

Keywords

Gradient Vector Array Element Unstructured Grid Tetrahedral Mesh Cell Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. Venkatakrishnan, A Perspective on Unstructured Grid Flow Solvers. NASA CR-195025 ICASE Report No. 95-3, (1995).Google Scholar
  2. [2]
    F. Lohmeyer, O. Vornberger: CFD with Adaptive FEM on Massively Parallel Systems. In this publication (1996).Google Scholar
  3. [3]
    M. Wierse: Higher Order Upwind Schemes on Unstructured Grids for the Nonstationary Compressible Navier-Stokes Equations in Complex Timedependent Geometries in 3-D. In this publication (1996).Google Scholar
  4. [4]
    C. Roehl, H. Simon: Flow Simulations in Aerodynamically Highly Loaded Turbomaschines Using Unstructured Adaptive Grids. In this publication (1996).Google Scholar
  5. [5]
    H. Greza, S. Bikker, W. Koschel: Efficient FEM Flow Simulation on Unstructured Adaptive Meshes. In this publication (1996).Google Scholar
  6. [6]
    R. Vilsmeier, D. Hänel: Adaptive Solutions of the Conservation Equations on Unstructured Grids. Ninth GAMM Conf. on Numerical Methods in Fluid Mechanics, Lausanne (Switzerland), Sept. 1991. In: Notes on Numerical Fluid Mechanics, vol. 35, pp. 321–330, Vieweg Verlag, (1992).Google Scholar
  7. [7]
    D. Hänel, R. Vilsmeier: Computations of Flow on Adaptive Unstructured Grids. In: E.H. Hirschel (Ed.): Flow Simulation with High Performance Computers I, Notes on Numerical Fluid Mechanics, vol. 38, pp 295–307, Vieweg Verlag, Wiesbaden, (1993).Google Scholar
  8. [8]
    R. Vilsmeier, D. Hänel: Adaptive Solutions for Compressible Flows on Unstructured, Strongly Anisotropic Grids. In: C. Hirsch, J. Periaux, W. Kordulla (Ed.): Computational Fluid Dynamics’ 92, vol. II, pp 945–952. Elsevier Science Publisher, Amsterdam, (1992).Google Scholar
  9. [9]
    R. Vilsmeier, D. Hänel: Adaptive Methods on Unstructured Grids for Euler and Navier-Stokes Equations. Computer & Fluids, vol. 22, pp. 485–499, (1993).zbMATHCrossRefGoogle Scholar
  10. [10]
    R. Vilsmeier, D. Hänel: Adaptive Solutions for Unsteady Laminar Flows on Unstructured Grids. Int. Journal for Numerical Methods in Fluids, vol. 21, (1995).Google Scholar
  11. [11]
    D. Hänel, I. Keilhauer, U. Uphoff, R. Vilsmeier: Shock Capturing and Dynamic Grid Adaption for Reactive Flow. Proc. of 6th Int. Symp. on Comp. Fluid Dynamics, Lake Tahoe, USA, (1995).Google Scholar
  12. [12]
    Vilsmeier R. and Hänel D.: A Field Method for 3-D Tetrahedral Mesh Generation and Adaption. Proc. of 14th Int. Conf. on Num. Meth. in Fluid Dynamics, Bangalore, India (1994).Google Scholar
  13. [13]
    R. Vilsmeier, D. Hänel: Solutions of the Conservation Equations and Adaptivity on 3-D Unstructured Meshes. Proc. of 9th International Conference on Numerical Methods in Laminar and Turbulent Flow, Atlanta, USA, (1995).Google Scholar
  14. [14]
    Mavriplis D. J.: Solution of the Two-Dimensional Euler Equations on Unstructured Triangular Meshes, Thesis, Princeton University, (1987).Google Scholar
  15. [15]
    Schwane, R., Hänel, D.: An Implicit Flux-Vector Splitting Scheme for the Computation of Viscous Hypersonic Flow. AIAA-paper No. 89-0274, (1989).Google Scholar
  16. [16]
    Harten, A., Lax, D., van Leer, B.: On upstream differencing and Godunov schemes for hyperbolic conservation laws. SIAM Review, vol 25, (1983).Google Scholar
  17. [17]
    Roe, P.L.: Approximate Rieman Solvers, Parameter Vectors and Difference Schemes. J. Comp. Phys., vol. 22, pp. 357, (1981).MathSciNetCrossRefGoogle Scholar
  18. [18]
    Liou, M. S.: On a new Class of Flux Splitting Schemes. Lecture Notes in Physics, vol 414, pp. 115–119, Springer Verlag Berlin, (1992).Google Scholar
  19. [19]
    van Leer, B.: Towards the Ultimate Conservative Difference Scheme. A second-order sequel to Godunov’s method. J. Comp. Phys. vol.32, pp.101–136, (1979).CrossRefGoogle Scholar
  20. [20]
    N. Maman and B. Larrouturou.: Dynamical mesh adaptation for two-dimensional reactive flow simulations. In: A.S. Arcila, J. Häuser, P.R. Eiseman, J.F. Thompson (Ed.): Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, pp. 55–66, North-Holland, Amsterdam, (1991).Google Scholar
  21. [21]
    S. Taneda: J. Phys. Soc. Japan, Vol 11, pp 1104–1108, (1956).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996

Authors and Affiliations

  • R. Vilsmeier
    • 1
  • D. Hänel
    • 1
  1. 1.Institut für Verbrennung und GasdynamikUniversität DuisburgDuisburgGermany

Personalised recommendations