Advertisement

AMRFLEX3D — Flow Simulation Using a Three-Dimensional Self-Adaptive, Structured Multi-Block Grid System

  • R. Hentschel
  • E. H. Hirschel
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM, volume 48)

Summary

The first section gives a description of the numerical procedure which is used for the integration of structured grid blocks. Such blocks are the basic elements of the self-adaptive grid structure. A hierarchically ordered level system, which reflects different refinement stages, serves as a scaffold. After a description of sensors used for refining interesting flow phenomena, an overview about the integration steps is given. The application of AMRFLEX3D to the cases of a three-dimensional, inviscid, supersonic corner flow and of a delta wing at transonic flow conditions is presented. For the latter simulation, both Euler and Navier-Stokes equations are used. Conclusions that can be drawn from experiences with grid refinement investigations are given.

Keywords

Grid Structure Delta Wing Refinement Factor Secondary Shock Basic Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Dadone, A., AND Grossman, B. Surface Boundary Conditions for the Numerical Solution of the Euler Equations. AIAA Journal 32, 2 (1994), 285–293.zbMATHCrossRefGoogle Scholar
  2. [2]
    Eberle, A. Characteristic Flux Averaging Approach to the Solution of Eulers Equations. VKI-Lecture Series 1987-04, 1987.Google Scholar
  3. [3]
    Elsenaar, A. Summary of NLR Wind Tunnel Tests on the International Vortex Flow Model. Tech. Rep. Memorandum AC-87-023 L, NLR, 1987.Google Scholar
  4. [4]
    Elsenaar, A., AND Hoeijmakers, H. An Experimental Study of the Flow over a Sharp-Edged Delta Wing at Subsonic and Transonic Speeds. In Vortex Flow Aerodynamics (1991), pp. 15-1–15-19. AGARD-CP-494.Google Scholar
  5. [5]
    Fischer, J.Sensors for Self-Adapting Grid Generation in Viscous Flow Computations, Vol. 35 of NNFM. Vieweg, Braunschweig/Wiesbaden, 1992, pp. 365–375.Google Scholar
  6. [6]
    Fischer, J. Selbstadaptive, lokale Netzverfeinerung für die numerische Simulation kompressibler, reibungsbehafteter Strömungen. Doctoral Thesis, 1993. Universität Stuttgart.Google Scholar
  7. [7]
    Fischer, J. Self-adaptive mesh refinement for the computation of steady, compressible, viscous flows. Z. Flugwiss. Weltraumforsch. 18 (1994), 241–252.Google Scholar
  8. [8]
    Fischer, J., AND Hirschel, E. H.Adaptive Navier-Stokes Calculations Using a Combination of an Implicit Finite — Volume Method with a Hierarchically Ordered Grid Structure, Vol. 38 of NNFM. Vieweg, Braunschweig/Wiesbaden, 1993, pp. 279–294. Flow Simulation with High Performance Computers I.Google Scholar
  9. [9]
    Greza, H., Bikker, S., AND Koschel, W. Efficient FEM Flow Simulation on Unstructured Adaptive Meshes. In this publication.Google Scholar
  10. [10]
    Hentschel, R. Entwicklung und Anwendung eines dreidimensionalen selbstadap-tiven Verfahrens auf der Basis strukturierter Gitter. Doctoral Thesis, 1996. Universität Stuttgart.Google Scholar
  11. [11]
    Hentschel, R., AND Hirschel, E. H. Self Adaptive Flow Computations on Structured Grids. In Computational Fluid Dynamics —94 (September 1994), S. Wagner, E. H. Hirschel, J. Periaux, and R. Piva, Eds., John Wiley & Sons, pp. 242–249.Google Scholar
  12. [12]
    Landgrebe, A. J. New Directions in Rotorcraft Computational Aerodynamics Research in the U.S. In Aerodynamics and Aeroacoustics of Rotorcraft (1995), pp. 1-1–1-12. AGARD-CP-552.Google Scholar
  13. [13]
    Marsilio, R. Vortical Solutions in Supersonic Corner Flows. AIAA Journal 31 (1993), 1651–1658.zbMATHCrossRefGoogle Scholar
  14. [14]
    Michl, T. Effiziente Euler-und Navier-Stokes Löser für den Einsatz auf Vektor-Hochleistungsrechnern und massiv-parallelen Systemen. Doctoral Thesis, 1995. Universität Stuttgart.Google Scholar
  15. [15]
    Schmatz, M. A.Three-Dimensional Viscous Flow Simulations Using An Implicit Relaxation Scheme, Vol. 22 of NNFM. Vieweg, Braunschweig/Wiesbaden, 1987, pp. 226–243. Numerical Simulation of the Transonic DFVLR-F5 Wing Experiment.Google Scholar
  16. [16]
    Schwarz, W. IEPG-TA15 Aerodynamische Berechnungsverfahren, Teil 2. Tech. Rep. DASA/LME211/S/R/1619, DASA-LM, 1993.Google Scholar
  17. [17]
    Vilsmeier, R., AND Hänel, D. Computational Aspects of Flow Simulation on 3-D, Unstructured, Adaptive Grids. In this publication.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996

Authors and Affiliations

  • R. Hentschel
    • 1
  • E. H. Hirschel
    • 1
  1. 1.Institut für Aerodynamik und GasdynamikUniversität StuttgartStuttgartGermany

Personalised recommendations