Skip to main content

Numerical Simulation of Incompressible Flows with the Method of Artificial Compressibility

  • Chapter

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 48))

Abstract

The Navier-Stokes equations for three-dimensional, unsteady, and incompressible flows are solved numerically. The applied method is based on the concept of artificial compressibility, combined with a dual-time stepping scheme. The solution within each physical time step is carried out with both an implicit and explicit scheme with possible multi-grid acceleration. The algorithm is formulated for a non-staggered, node-centered, curvilinear, block-structured grid, enabling the simulation of flows in complex geometries. Results are presented and compared with each other for the flow around a circular cylinder mounted in a square duct. For the flow in a 90°-T-junction results are compared to experimental flow visualization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Althaus, Ch. Brücker, and M. Weimer. Breakdown of slender vortices. In S. I. Green, editor, Fluid Vortices. Kluwer Academic Publishing, 1995.

    Google Scholar 

  2. A. Arnone, M. S. Liou, and L. A. Povinelli. Multigrid time-accurate integration of Navier-Stokes equations. Technical Memorandum 106373, NASA, November 1993.

    Google Scholar 

  3. B. Bartmann and R. Neikes. Experimentelle Untersuchung verzweigender Innenströmung II. FKM/AIF-Vorhaben Nr. 113, Abschlußbericht, 1991.

    Google Scholar 

  4. A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation, 31(138):333–390, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Brandt. Guide to multigrid development. In Lecture Notes in Mathematics, pages 220–312. Springer Verlag Berlin, 1981.

    Google Scholar 

  6. M. Breuer and D. Hänel. A dual time-stepping method for 3-d, viscous, incompressible vortex flows. Computers Fluids, 22(4/5):467–484, 1993.

    Article  MATH  Google Scholar 

  7. Michael Breuer. Numerische Lösung der Navier-Stokes Gleichungen für dreidimensionale inkompressible instationäre Strömungen zur Simulation des Wirbelplatzens. Dissertation, Aerodynamisches Institut der RWTH-Aachen, Juni 1991.

    Google Scholar 

  8. A.J. Chorin. A Numerical Method for Solving Incompressible Viscous Flow. J. Comput. Phys., 2:12–26, 1967.

    Article  MATH  Google Scholar 

  9. F. Durst, M. Schäfer, K. Wechsler, R. Becker, R. Rannacher, and S. Turek. Definition of benchmark problems (incompressible laminar flow. In Flow Simulation with High Performance Computers. DFG, 1995.

    Google Scholar 

  10. Dieter Hänel. Computational techniques for solving the Navier-Stokes equations. In CFD Techniques for Propulsion Applications, pages 1.1–1.26. AGARD, May 1991. AGARD CP-510.

    Google Scholar 

  11. A. Jameson. Solution of the Euler equations for two dimensional transonic flow by a multigrid method. Applied Math, and Comp., 13:327–355, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Jameson. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. Technical Report AIAA paper No. 91-1596, American Institute of Aeronautics and Astronautics, 1991.

    Google Scholar 

  13. E. Krause, W. Limberg, Ch. Brücker, M. Meinke, and A. Wunderlich. Direkte Numerische Simulation verzweigender Innenströmungen. AIF-Abschlußbericht, Forschungsvorhaben AIF-Nr. 9163, FKM-Nr. 690176, 1996. to be published.

    Google Scholar 

  14. B. P. Leonard. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering, 19:59, 1979.

    Article  MATH  Google Scholar 

  15. C. L. Merkle and M. Athavale. Time-accurate unsteady incompressible flow algorithms based on artificial compressibility. AIAA-Paper, AIAA 87-1137, 1987.

    Google Scholar 

  16. Y. Nakamura and Y. Takemoto. Solutions of Incompressible Flows Using a Generalized QUICK Method. In Numerical Methods in Fluid Mechanics II, Proc. of the Int. Symp. on Comput. Fluid Dynamics, Tokyo, Sept. 9–12 1985.

    Google Scholar 

  17. J. Ong, G. Enden, and A.S. Popel. Converging three-dimensional Stokes flow of two fluids in a t-type bifurcation. J. Fluid Mech., 270:51–71, 1994.

    Article  MATH  Google Scholar 

  18. E. Turkel. Review of preconditioning methods for fluid dynamics. ICASE Report, No. 92-47, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Weimer, M., Meinke, M., Krause, E. (1996). Numerical Simulation of Incompressible Flows with the Method of Artificial Compressibility. In: Hirschel, E.H. (eds) Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics (NNFM), vol 48. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-89849-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89849-4_26

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-89851-7

  • Online ISBN: 978-3-322-89849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics