Advertisement

Multiple Pressure Variable (MPV) Approach for Low Mach Number Flows Based on Asymptotic Analysis

  • K. J. Geratz
  • R. Klein
  • C. D. Munz
  • S. Roller
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM, volume 48)

Summary

An asymptotic analysis of the compressible Euler equations in the limit of vanishing Mach numbers is used as a guideline for the development of a low Mach number extension of an explicit higher order shock capturing scheme. For moderate and large Mach numbers the underlying explicit compressible flow solver is active without modification. For low Mach numbers, the scheme employs an operator splitting technique motivated by the asymptotic analysis. Advection of mass and momentum as well as long wave acoustics are discretized explicitly, while in solving the sonic terms, the scheme uses an implicit pressure correction formulation to guarantee both divergence-free flow in the zero Mach number limit and appropriate representation of weakly nonlinear acoustic effects for small but finite Mach numbers. This asymptotics based approach is also used to show how to modify incompressible flow solvers to capture weakly compressible flows.

Keywords

Mach Number Euler Equation Incompressible Flow Compressible Flow Divergence Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Patnaik G., Guirguis R.H., Boris J.P., Oran E.S., ”A Barely Implicit Correction for Flux Corrected Transport”, JCP, 71 (1987), pp. 1–20.zbMATHGoogle Scholar
  2. [2]
    Chorin A.J., ”Numerical solution of the Navier-Stokes equations”, Math. Comp., 22 (1968), pp. 745–762.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Chorin A.J., ”On the convergence of Discrete Approximations to the Navier-Stokes Equations”, Math. Comput., 23 (1969), pp. 341–353.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Gustafsson B., Stoor H., ”Navier-Stokes Equations for almost Incompressible Flow”, SIAM J. Num. Anal., 28 (1991), pp. 1523–1547.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Yee H.C., Shinn J.L., ”Semi-Implicit and Fully Implicit Shock Capturing Methods for Hyperbolic Conservation Laws with Stiff Source Terms”, AIAA Jnl., 27 (1989), pp. 299.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Bell J.B., Colella P., Glaz H.M., ”A Second-Order Projection Method for the Incompressible Navier-Stokes Equations”, JCP, 85 (1989), pp. 257–283.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Weimer M., Meinke M., Krause E., ”Numerical Simulation of Incompressible Flows with the Method of Artifical Compressibility”, In this publication.Google Scholar
  8. [8]
    Klein R., ”Semi-Implicit Extension of a Godunov-Type Scheme Based on Low Mach Number Asymptotics I: One-dimensional flow”, JCP, 121 (1995), pp. 213–237zbMATHGoogle Scholar
  9. [9]
    Klein R., Munz C.D., ”The Multiple Pressure Variable (MPV) Approach for the Numerical Approximation of Weakly Compressible Fluid Flow”, Proc. of the Int. Conf. on Num. Meth. in Cont. Mech., Prague, June 1994.Google Scholar
  10. [10]
    Klein R., Lange K., Willems W., Munz C.D., ”Semi-Implicit High Resolution Schemes for Low Mach Number Flows”, Proc. of Fifth Int. Conf. on Hyperbolic Problems, Theory, Numerics, and Applications, Stony Brook, 1994.Google Scholar
  11. [11]
    Klein R., Munz C.D., ”The Extension of Incompressible Flow Solvers to the Weakly Compressible Regime”, submitted to Theoretical and Numerical Fluid Mechanics, Sept. 1995.Google Scholar
  12. [12]
    Majda A.J., Sethian J., ”The derivation and Numerical Solution of the Equations of Zero Mach Number Combustion”, Comb. Sci. Technol., 42 (1985), pp. 185–205.CrossRefGoogle Scholar
  13. [13]
    Klainerman S., Majda A.J., ”Compressible and Incompressible Fluids”, Comm. Pure Applied Math., 35 (1982), pp. 629.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Strang, G., ”On the Construction and Comparison of Difference Schemes”, SIAM, J. Num. Anal., 5 (1967), pp. 506–517.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Chorin A.J., Marsden J.E., ”A Mathematical Introduction to Fluid Mechanics”, Springer, New York, 1990.zbMATHCrossRefGoogle Scholar
  16. [16]
    Mulder W., Osher S., ”Computing Interface Motion in Compressible Gas Dynamics”, JCP, 100 (1992), pp. 209–228.MathSciNetzbMATHGoogle Scholar
  17. [17]
    LINSOL, Solver for Large and Sparce Linear Systems, Rechenzentrum der Universität Karlsruhe, http://www.rz.uni-karlsruhe.de/Uni/RZ/Forschung/Numerik/linsol/index.htmp.Google Scholar
  18. [18]
    Temam R., ”Sur l’approximation de la solution des equations de Navier-Stokes par la methode des pas fractionaires”, Arch. Rat. Mech. Anal., 32 (1969), pp. 135–153.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Temam R., ”Navier-Stokes Equations”, North-Holland, Amsterdam, New York, Oxford, 1977.zbMATHGoogle Scholar
  20. [20]
    Patankar S., ”Numerical Heat Transfer and Fluid Flow”, McGraw-Hill, Washington D.C., 1980.zbMATHGoogle Scholar
  21. [21]
    Patankar S., Spalding D., ”A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flow”, Int. J. Heat Mass Transfer, 15 (1972), 1787–1806.zbMATHCrossRefGoogle Scholar
  22. [22]
    Gresho P.M., Chan S.T., ”On the Theory of Semi-Implicit Projection Methods for Viscous Incompressible Flow and its Implementation via a Finite Element Method That Also Introduces a Nearly Consistent Mass Matrix. Part2: Implementation”, Int. J. for Num. Meth. in Fluids, 11 (1990), pp. 621–659.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    LeVeque R.J., ”A Large Time Step Generalization of Godunov’s Method for Systems of Conservation Laws”, SIAM J. Num. Anal., 22 (1985), pp. 1051–1073.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996

Authors and Affiliations

  • K. J. Geratz
    • 1
  • R. Klein
    • 1
  • C. D. Munz
    • 2
  • S. Roller
    • 2
  1. 1.Institut für Technische MechanikRWTH AachenAachenGermany
  2. 2.Forschungszentrum Karlsruhe, Technik und Umwelt Institut für Neutronenphysik und ReaktortechnikKarlsruheGermany

Personalised recommendations