Advertisement

Large-Eddy Simulation and Eigenmode Decomposition of Turbulent Boundary Layer Flow over a Hemisphere

  • Michael Manhart
  • Hans Wengle
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM, volume 48)

Summary

Large-eddy simulation (LES) has been applied to turbulent boundary layer flow over a hemisphere with a rough surface (at Re D = 150000). The shape of the surface-mounted hemisphere is blocked-out within a cartesian non-equidistant grid. The time-dependent inflow condition is provided from a separate LES of a boundary layer developing behind a barrier fence and a set of vorticity generators. Two results from LES with different grid resolution are compared with experimental data from a corresponding wind tunnel experiment. In addition, the data sets from LES have been analysed using proper orthogonal decomposition (POD). From this analysis it can be concluded that the first three fluctuating eigenmodes (representing about 24 % of the turbulent kinetic energy) can be related to the major events in the separated flow behind the flow obstacle.

Keywords

Direct Numerical Simulation Coherent Structure Proper Orthogonal Decomposition Streamwise Velocity Wind Tunnel Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Akselvoll, K. and Moin, P. (1993): Large-eddy simulation of a backward facing step flow, in: W. Rodi and F. Martelli (eds.) Engineering Turbulence Modelling and Experiments 2, Elsevier Science Publ., Amsterdam.Google Scholar
  2. [2]
    Amal, M. and Friedrich, R. (1992): Large eddy simulation of a turbulent flow with separation, 8th Symp. Turb. Shear Flows, September 9–11, 1991, Munich, Germany, in: F. Durst et al.(eds.) Turbulent Shear Flows 8, Springer-Verlag, 1993.Google Scholar
  3. [3]
    Aubry, N., Guyonnet, R. and Lima, R. (1991): Spatio-temporal analysis of complex signals: theory and applications, J. Statist. Phys. 64(3/4), pp. 683–739.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Breuer, M. and Rodi, W. (1996): Large eddy simulation for complex turbulent flows of practical interest, In this publication.Google Scholar
  5. [5]
    Le, H., Moin, P. and Kim. J. (1993): Direct numerical simulation of turbulent flow over a backward facing step, 9th Symp. Turb. Shear Flows, August 16–18, 1993, Kyoto.Google Scholar
  6. [6]
    Lumley, J.L. (1970): Stochastic Tools in Turbulence, Academic Press, New York.zbMATHGoogle Scholar
  7. [7]
    Manhart, M., Wengle, H., Schmid, P. and Werner, H. (1993): Eigenmode decomposition of the turbulent shear layer above a square rib, Applied Scientific Research 51, pp. 359–364, and in: F.T.M. Nieuwstadt (ed.) Advances in Turbulence IV, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993.CrossRefGoogle Scholar
  8. [8]
    Manhart, M. and Wengle H. (1993): Eigenmode decomposition of the turbulent velocity and vorticity fields above a square rib, in: E.H. Hirschel (ed.) Flow Simulation with High-Performance computers I, pp. 186–200, Vieweg Verlag, Braunschweig, 1993.Google Scholar
  9. [9]
    Manhart, M. and Wengle, H. (1993): A spatio-temporal decomposition of a fully inhomogeneous turbulent flow field, Theoret. Comput. Fluid Dynamics 5, pp. 223–242.zbMATHCrossRefGoogle Scholar
  10. [10]
    Manhart, M. and Wengle, H. (1994): Large-edy simulation of turbulent boundary layer flow over a hemisphere, First ERCOFTAC Workshop on’ Direct and Large-Eddy Simulation’, March 27–30, Guildford, England, in: P.R. Voke et al. (eds.) Direct and Large-Eddy Simulation I, Kluwer Academic Publs., Dordrecht, The Netherlands, 1994.Google Scholar
  11. [11]
    Manhart, M. and Wengle (1994): Coherent structures in turbulent boundary layer flow over a hemisphere, Fifth European Turbulence Conference, July 5–8, 1994, Siena, Italy, in: Benzi (ed.) Advances in Turbulence V, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993.Google Scholar
  12. [12]
    Manhart, M (1995): Umströmung einer Halbkugel in turbulenter Grenzschicht-Grobstruktursimulation und Eigenmodeanalyse der Ablöseprozesse, Dissertation (in german), Universität der Bundeswehr München.Google Scholar
  13. [13]
    Murakami, S., Mochida, A. and Hayashi, Y (1991): Scrutinizing κ — ε EVM and ASM by means of LES and wind tunnel for flowfield around cube, 8th Symp. Turb. Shear Flows, September 9–11, 1991, Munich, Germany.Google Scholar
  14. [14]
    Rempfer, D. (1991): Kohärente Strukturen und Chaos beim laminar-turbulenten Umschlag, Dissertation (in german), Universität Stuttgart.Google Scholar
  15. [15]
    Rempfer, D. and Fasel, H. (1994): Evolution of three-dimensional coherent structures in a flat-plate boundary layer, J. Fluid Mech. 260, pp. 351–375.CrossRefGoogle Scholar
  16. [16]
    Savory, E. and Toy, N. (1986a): Hemispheres and hemisphere-cylinders in turbulent boundary layers, J. Wind Eng. and Ind. Aerodyn. 23, pp. 345–364.CrossRefGoogle Scholar
  17. [17]
    Savory, E. and Toy, N. (1986b): The flow regime in the turbulent near wake of a hemisphere, Experiments in Fluids 4, pp. 181–188.Google Scholar
  18. [18]
    Savory, E. and Toy, N. (1988): The separated shear layers associated with hemispherical bodies in turbulent boundary layers, J. Wind Eng. and Ind. Aerodyn. 28, pp. 291–300.CrossRefGoogle Scholar
  19. [19]
    Silveira-Neto, A., Grand, D., Metais, O. and Lesieur, M. (1991): Large eddy simulation of the turbulent flow in the downstream region of a backward-facing step, Phys.Rev. Letters 66, No. 18, pp. 2320–2323.CrossRefGoogle Scholar
  20. [20]
    Sirovich. L. (1987): Turbulence and the dynamics of coherent structures: I, II, III, Quart. Appl. Math. 5, pp. 561–590.MathSciNetGoogle Scholar
  21. [21]
    Toy, N., Moss, W. D. and Savory, E. (1983): Wind tunnel studies on a dome in turbulent boundary layers, J. Wind Eng. and Ind. Aerodyn. 11, pp. 201–212.CrossRefGoogle Scholar
  22. [22]
    Werner, H. and Wengle, H. (1989): Large-eddy simulation of turbulent flow over a square rib in a channel, 7th Symp. Turb. Shear Flows, August 21–23, 1989, Stanford, USA, in: H. H. Fernholz and H. E. Fiedler (eds.) Advances in Turbulence 2, Springer, Berlin, 1989.Google Scholar
  23. [23]
    Werner, H. and Wengle, H. (1991): Large-eddy simulation of turbulent flow over and around a cube in a plate channel, 8th Symp. Turb. Shear Flows, September 9–11, 1991, Munich, Germany, in: F. Durst et al. (edis.) Turbulent Shear Flows 8, Springer, Berlin, 1993.Google Scholar
  24. [24]
    Yang, K.-S. and Ferziger, J. H. (1993): Large-eddy simulation of turbulent obstacle flow using a dynamic subgrid-scale model, AIAA J., Vol.31, No. 8, pp. 1406–1413.zbMATHCrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996

Authors and Affiliations

  • Michael Manhart
    • 1
  • Hans Wengle
    • 1
  1. 1.Institut für Strömungsmechanik und Aerodynamik, LRT/WE7Universität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations