Large-Eddy Simulation of Near-Wall Turbulence

  • C. Härtel
  • L. Kleiser
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM, volume 48)


The present paper summarizes results from a numerical study conducted in order to clarify the requirements for the large-eddy simulation of near-wall turbulence. A key finding of the study is that an inverse cascade of turbulent kinetic energy from small to large scales exists within the buffer layer which cannot be accounted for by currently applied subgrid models. This may lead to significant errors in large-eddy simulations when the wall layer is resolved. Therefore a new model for the eddy viscosity is proposed which is more consistent with the near-wall physics than are the models commonly employed. A priori tests of this new model show promising results. The present investigation is primarily based on direct numerical simulation data of turbulent channel flow at various low Reynolds numbers. However, no significant Reynolds-number effects were observed which suggests that the findings may essentially be generalized to flows at higher Reynolds numbers.


Eddy Viscosity Turbulent Channel Flow Direct Numerical Simulation Data Wall Unit Direct Numerical Simulation Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Breuer and W. Rodi: In this publication.Google Scholar
  2. [2]
    M. Manhart and H. Wengle: In this publication.Google Scholar
  3. [3]
    J. W. Deardorff: J. Fluid Mech. 41, 453–480, 1970.zbMATHCrossRefGoogle Scholar
  4. [4]
    U. Schumann: J. Comput. Phys. 18, 376–404, 1975.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    U. Piomelli, J. H. Ferziger and P. Moin: Phys. Fluids A 1, 1061–1068, 1989.CrossRefGoogle Scholar
  6. [6]
    K. Horiuti: Phys. Fluids A 5, 146–157, 1993.zbMATHCrossRefGoogle Scholar
  7. [7]
    C. Härtel and L. Kleiser: Computational Fluid Dynamics’ 92, Vol. 1, eds. Ch. Hirsch et al., Elsevier, Amsterdam, 1992.Google Scholar
  8. [8]
    C. Härtel and L. Kleiser: Engineering Applications of Large-Eddy Simulations, eds. S. A. Ragab and U. Piomelli, FED-Vol. 162, ASME, 1993.Google Scholar
  9. [9]
    C. Härtel and L. Kleiser: Flow Simulation With High-Performance Computers I, ed. E. H. Hirschel, NNFM 38, Vieweg, Braunschweig, 1993.Google Scholar
  10. [10]
    C. Härtel: Doctoral Dissertation, Technical University of Munich, Germany, 1994.Google Scholar
  11. [11]
    C. Härtel: Transition, Turbulence and Combustion, Vol. II, eds. M. Y. Hussaini et al., Kluwer Academic Publishers, Dordrecht, 1994.Google Scholar
  12. [12]
    C. Härtel and L. Kleiser: Direct and Large-Eddy Simulation I, eds. P. Voke et al., Kluwer Academic Publishers, Dordrecht, 1994.Google Scholar
  13. [13]
    C. Härtel, L. Kleiser, F. Unger and R. Friedrich: Phys. Fluids 6, 3130–3143, 1994.zbMATHCrossRefGoogle Scholar
  14. [14]
    C. Härtel and L. Kleiser: submitted to Physics of Fluids, 1995.Google Scholar
  15. [15]
    C. Härtel: Handbook of Computational Fluid Mechanics, ed. R. Peyret, Academic Press, to appear 1996.Google Scholar
  16. [16]
    J. A. Domaradzki, W. Liu, C. Härtel and L. Kleiser: Phys. Fluids 6, 1583–1599, 1994.zbMATHCrossRefGoogle Scholar
  17. [17]
    A. Leonard: Adv. Geophys. 18 A, 237–248, 1974.Google Scholar
  18. [18]
    A. A. Aldama: Lecture Notes in Engineering 56, Springer Verlag, Berlin, 1990.Google Scholar
  19. [19]
    N. Gilbert and L. Kleiser: Proc. 8th Symp. on Turbulent Shear Flows, Munich, Germany, September 9–11, 1991.Google Scholar
  20. [20]
    R. A. Antonia and J. Kim: J. Fluid Mech. 276, 61–80, 1994.CrossRefGoogle Scholar
  21. [21]
    F. Unger: Doctoral Dissertation, Technical University of Munich, Germany, 1994.Google Scholar
  22. [22]
    R. B. Dean: J. of Fluids Eng. 100, 215–223, 1978.CrossRefGoogle Scholar
  23. [23]
    T. A. Zang: Phil. Trans. R. Soc. Lond. A 336, 95–102, 1991.zbMATHCrossRefGoogle Scholar
  24. [24]
    J. Smagorinsky: Monthly Weather Review 91, 99–164, 1963.CrossRefGoogle Scholar
  25. [25]
    D. K. Lilly: Proc. IBM Scientific Computing Symposium on Environmental Sciences, Yorktown Heights, N.Y., 1967.Google Scholar
  26. [26]
    A. Scotti, Ch. Meneveau and D. K. Lilly: Phys. Fluids A 5, 2306–2308, 1993.zbMATHCrossRefGoogle Scholar
  27. [27]
    E. R. Van Driest: J. Aero. Sci. 23, 1007–1011, 1956.zbMATHGoogle Scholar
  28. [28]
    O. Métais and M. Lesieur: J. Fluid Mech. 239, 157–194, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    J.-P. Chollet and M. Lesieur: J. Atmos. Sci. 38, 2747–2757, 1981.CrossRefGoogle Scholar
  30. [30]
    P. Comte, S. Lee and W. H. Cabot: Proc. 1990 Summer Program, Center for Turbulence Research, 31–45.Google Scholar
  31. [31]
    T. A. Zang, C.-L. Chang and L. L. Ng: Proc. Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows, Long Beach, January 13–15, 1992.Google Scholar
  32. [32]
    M. Germano, U. Piomelli, P. Moin and W. H. Cabot: Phys. Fluids A 3, 1760–1765, 1991.zbMATHCrossRefGoogle Scholar
  33. [33]
    D. K. Lilly: Phys. Fluids A 4, 633–635, 1992.CrossRefGoogle Scholar
  34. [34]
    R. S. Rogallo and P. Moin: Ann. Rev. Fluid Mech. 16, 99–137, 1984.CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996

Authors and Affiliations

  • C. Härtel
    • 1
  • L. Kleiser
    • 1
  1. 1.Institute of Fluid Dynamics, Swiss Federal Institute of TechnologyZürichSwitzerland

Personalised recommendations