Advertisement

Direct Numerical Simulation of Separated Turbulent Flow over a Wavy Boundary

  • Carsten Maaß
  • Ulrich Schumann
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM, volume 48)

Summary

The impact of a wavy surface on turbulent flow is investigated by direct numerical simulation. By means of finite differences in terrain following coordinates, the method treats the flow in a plane channel with wavy lower and flat top surfaces. Both surfaces are smooth. The lower surface wave amplitude is 0.05 and the wavelength is 1 in units of the mean channel height. The Reynolds number in terms of mean velocity and mean channel height is 6760. Parameter studies are performed with different resolution, Reynolds number and geometrical shape of the surface wave. If the vertical resolution is fine enough to resolve the viscous surface layer, a recirculation zone develops as expected for this surface geometry and Reynolds number. The comparison with existing experimental data shows good agreement when the precise details of the surface wave geometry, which deviates slightly from a sinusoidal profile, is taken into account.

Keywords

Wall Shear Stress Shear Layer Direct Numerical Simulation Recirculation Zone Channel Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. P. Almeida, D. F. G. Durão, and M. V. Heitor. Wake flows behind two-dimensional model hills. Experimental Thermal and Fluid Science, 7:87–101, 1993.CrossRefGoogle Scholar
  2. [2]
    A. Andrén, A. R. Brown, J. Graf, P. J. Mason, C.-H. Moeng, F. T. M. Nieuwstadt, and U. Schumann. Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes. Q. J. R. Meteorol. Soc., 120:1457–1484, 1994.CrossRefGoogle Scholar
  3. [3]
    T. B. Benjamin. Shearing flow over a wavy boundary. J. Fluid Mech., 6:161–205, 1959.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    M. Breuer and W. Rodi. Large-eddy simulation of complex flows of practical interest. In this publication.Google Scholar
  5. [5]
    J. J. Buckles, T. J. Hanratty, and R. J. Adrian. Turbulent flow over large-amplitude wavy surfaces. J. Fluid Mech., 140:27–44, 1984.CrossRefGoogle Scholar
  6. [6]
    M. Dianat and I. P. Castro. Turbulence in a separated boundary layer. J. Fluid Mech., 226:91–123, 1991.CrossRefGoogle Scholar
  7. [7]
    A. Dörnbrack, T. Gerz, and U. Schumann. Turbulent breaking and overturning gravity waves below a critical level. Appl. Sci. Res., 54:163–176, 1995.zbMATHCrossRefGoogle Scholar
  8. [8]
    A. Dörnbrack and U. Schumann. Numerical simulation of turbulent convective flow over wavy terrain. Boundary-Layer Meteorol., 65:323–355, 1993.Google Scholar
  9. [9]
    J. G. M. Eggels, F. Unger, M. H. Weiss, J. Westerweel, R. J. Adrian, R. Friedrich, and F. T. M. Nieuwstadt. Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech., 268:175–209, 1994.CrossRefGoogle Scholar
  10. [10]
    W. Gong, P. A. Taylor, and A. Dörnbrack. Turbulent boundary-layer flow over fixed, aerodynamically rough, 2-d sinusoidal waves. J. Fluid Mech., 1996. in press.Google Scholar
  11. [11]
    C. Härtel and L. Kleiser. Large-eddy simulation of near-wall turbulence. In this publication.Google Scholar
  12. [12]
    M. Hino and T. Okumura. Coherent structure of turbulent flow over wavy walls. In Proc. 9th Turbulent Shear Flow Symp. Kyoto, Aug. 16–18, pages 14.3.1–14.3.4, 1993.Google Scholar
  13. [13]
    J. D. Hudson. The effect of a wavy boundary on turbulent flow. PhD thesis, Dept. Chemical Engineering, University of Illinois, Urbana, 1993.Google Scholar
  14. [14]
    T. Kajishima, Y. Miyake, and T. Ohta. Direct numerical simulation of turbulent flow in a wavy channel. In Proc. of The International Symp. on Mathematical Modelling of Turbulent Flows. Tokyo, Dec. 18–20, pages 176–180, 1995.Google Scholar
  15. [15]
    J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low reynolds number. J. Fluid Mech., 177:133–166, 1987.zbMATHCrossRefGoogle Scholar
  16. [16]
    K. Krettenauer and U. Schumann. Numerical simulation of turbulent convection over wavy terrain. J. Fluid Mech., 237:261–299, 1992.CrossRefGoogle Scholar
  17. [17]
    J. D. Kuzan, T. J. Hanratty, and R. J. Adrian. Turbulent flows with incipient separation over solid waves. Exper. in Fluids, 7:88–98, 1989.Google Scholar
  18. [18]
    H. Lamb. Hydrodynamics. Dover, New York, 1945.Google Scholar
  19. [19]
    C. Maaß, A. Dörnbrack, and U. Schumann. Grobstruktursimulationen turbulenter Strömungen über welligem Untergrund. Deutsche Meteorologen-Tagung, 16.–20.3.1992, Berlin. In Ann. Meteorol., volume 27, pages 306–307, 1992.Google Scholar
  20. [20]
    C. Maaß and U. Schumann. Numerical simulation of turbulent flow over a wavy boundary. In P. R. Voke, L. Kleiser, and J.-P. Chollet, editors, Direct and large-eddy simulation I: selected papers from the First ERCOFTAC Workshop on Direct and Large-Eddy Simulation, pages 287–297. Kluwer Academic Press, Dordrecht, 1994.Google Scholar
  21. [21]
    H. Motzfeld. Die turbulente Strömung an welligen Wänden. Z. angew. Math. Mech., 17:193–212, 1937.zbMATHCrossRefGoogle Scholar
  22. [22]
    W. Rodi, editor. ERCOFTAC Workshop on Data Bases and Testing of Calculation Methods for Turbulent Flows, Karlsruhe, April 3–7 1995.Google Scholar
  23. [23]
    U. Schumann. Large-eddy simulation of turbulent convection over flat and wavy terrain. In B. Galperin and S. A. Orszag, editors, Large-Eddy Simulation of Complex Engineering and Geophysical Flows, pages 399–421. Cambridge Univ. Press, 1993.Google Scholar
  24. [24]
    U. Schumann. Stochastic backscatter of turbulence energy and scalar variances by random subgrid-scale fluxes. Proc. Roy. Soc. London A, 451:293–318 and 811, 1995.zbMATHCrossRefGoogle Scholar
  25. [25]
    U. Schumann and M. Strietzel. Parallel solution of tridiagonal systems for the Poisson equation. J. Sci. Comput., 10:181–190, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    C. B. Thorsness, P. E. Morrisroe, and T. J. Hanratty. A comparison of linear theory with measurements of the variation of shear stress along a solid wave. Chem. Eng. Sci., 33:579–592, 1978.CrossRefGoogle Scholar
  27. [27]
    F. Unger. Numerische Simulation turbulenter Rohrströmungen. PhD thesis, Technische Universität, München, 1994.Google Scholar
  28. [28]
    N. Wood and P. Mason. The pressure force induced by neutral, turbulent flow over hills. Q. J. R. Meteorol. Soc, 119:1233–1267, 1993.CrossRefGoogle Scholar
  29. [29]
    D. P. Zilker, G. W. Cook, and T. J. Hanratty. Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 1. Non-separated flows. J. Fluid Mech., 82:29–51, 1977.CrossRefGoogle Scholar
  30. [30]
    D. P. Zilker and T. J. Hanratty. Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 2. Separated flows. J. Fluid Mech., 90:257–271, 1979.CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996

Authors and Affiliations

  • Carsten Maaß
    • 1
  • Ulrich Schumann
    • 1
  1. 1.DLR, Institut für Physik der AtmosphäreOberpfaffenhofenGermany

Personalised recommendations