Skip to main content

Convection-Diffusion Phenomena and a Navier-Stokes Processor

  • Chapter
Research in Numerical Fluid mechanics

Part of the book series: Notes on Numerical Fluid Mechanics ((NNFM,volume 17))

  • 36 Accesses

Summary

For heat and mass transport in complex flow situations computational methods are very important. Many technological processes can be simulated by a set of convection-diffusion equations. These equations can numerically be solved using a single algorithm based on the finite domain or control volume method. For turbulent transport a k-ɛ model is often used. This requires that in some cases an experimental validation for a completely new flow situation has to be done.

For two examples the application will be shown. The natural convection in a square cavity both for laminar and turbulent cases will be discussed. For flows and heat transfer in living spaces good predictions including radiative exchange can be given. The second example is the simulation model “Furnace”. The flow, combustion and heat transfer in a glass furnace can be predicted. A full 3-dimensional model has been developed. For fine grids, and for time dependent or 3-D situations the computational effort is large. The elliptic flows and the coupling of a large set of partial differential equations give a slow convergence. CPU time on a main-frame computer may run in many hours. This has led us to the development of a processor to directly solve the convection-diffusion algorithm for the finite control volume method as well as the transport equations. This will be applied in a special purpose dedicated Navier-Stokes computer with the capabilities of a super-computer for this special algorithm. It can be expected that this tool will enhance the application of numerical transport phenomena studies strongly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spalding, D.B.: “A unified theory of friction, heat transfer in the turbulent boundary layer”, Int.J. Heat and Mass Transfer, 7 (1964) pp. 743–761.

    Article  Google Scholar 

  2. Patankar, S.V., Spalding, D.B.: “A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic flows”, Int.J. Heat and Mass Transfer, 15 (1972) pp. 1787–1806.

    Article  MATH  Google Scholar 

  3. Schinkel, W.M.M., Hoogendoorn, C.J.: “Core stratification effects in inclined cavities”, Appl.Sc.Res., 12 (1985) pp. 109–130.

    Article  Google Scholar 

  4. Linthorst, S.J.M., Hoogendoorn, C.J.: “Numerical calculations of heat transfer by natural convection in a cubical enclosure”, Proc. 2nd Int. Conf. Num. Methods in Laminar and Turbulent Flow, Venice (1981) pp. 1069–1078.

    Google Scholar 

  5. Linthorst, S.J.M., Hoogendoorn, C.J.: “Natural convective heat transfer in three dimgjisional inclined small aspect ratio enclosures”, Proc. 8 Int. Heat Tr. Conf., San Francisco (1986) pp. 1501–1505.

    Google Scholar 

  6. Bos, W.G., Elsen, T. van den, Hoogendoorn, C.J., Test, F.L.: “Numerical study of a smoke layer in a corridor”, Comb. Sc. and Techn., 38. (1984) pp. 227–243.

    Article  Google Scholar 

  7. Dalhuijsen, A.J., Meer, Th.H. van der, Hoogendoorn, C.J., Hoogvliet, J., Bennekom, W.P. van: “Hydrodynamic properties and mass transfer characteristics of electrochemical flow- through cells of the confined wall-jet type”, J. Electroanal. Chem., 182 (1985) pp. 295–313.

    Article  Google Scholar 

  8. Singhal, A.K.: “A critical look at the progress in numerical heat transfer and some suggestions for improvement”, Num. Heat Transfer, 8 (1985) pp. 505–517.

    ADS  Google Scholar 

  9. Patel, V.C., Rodi, W., Scheuerer, G.: “Evaluation of turbulence models for near wall and low-Reynolds number flows”, Proc.3rd Symp. Turbulent Shear Flows, Davis, Cal. (1981) pp. 1–11 8.

    Google Scholar 

  10. Patankar, S.V.: Numerical heat transfer and fluid flow, McGraw-Hill, New York (1980).

    MATH  Google Scholar 

  11. Doornmaal, J.P. van, Raithby, G.D.: “Enhancement.of the SIMPLE method for predicting incompressible fluid flows”, Num. heat transfer, 7 (1984) pp. 147–163.

    ADS  Google Scholar 

  12. Vahl Davis, G. de, Jones, I.P.: “Natural convection in a square cavity, a comparison excercise”, Int.J. Num. Meth. in Fluids, 3 (1983) pp. 227–248.

    Article  ADS  MATH  Google Scholar 

  13. Jones, I.P.: “A comparison problem for numerical methods in fluid dynamics, the double glazing problem”, Num. Meth. in Therm. Probl., Pineridge Press, UK (1979) pp. 338–348.

    Google Scholar 

  14. Euser, H., Hoogendoorn, C.J., Ooyen, H. van: “Airflow in a room as induced by natural convection streams”, Energy Cons, in Heating, Cooling, Ventil. Build., Ed. Hoogendoorn, C.J., Afgan, N.H., Hemisphere Publ., USA, 1 (1978) pp. 259–270.

    Google Scholar 

  15. Vermogen van radiatoren bij niet genormeerde opstelling. Publ. nr.l Stichting ISSO, Rotterdam, Holland (1980) pp. 29–31.

    Google Scholar 

  16. Simonis, F., Waal, H. de, Beerkens, R.C.G.: “Influence of furnace design and operation parameters on the residence time distribution of glass tanks, predicted by 3-D computer simulations”, Proc. 14 Int. Conf. on Glass, India (1986).

    Google Scholar 

  17. Peterson, V.L.: “Impact of computers on aerodynamics research and development”, Proc. I.E.E.E. 72 (1984) no.l pp. 68–79.

    Google Scholar 

  18. Hilhorst, H.J., Bakker, A.F., Bruin, C., Compagner, A., Hoogland, A.: “Special purpose computers in physics”, J. of Statistical Physics 34 (1984) pp. 987–1000.

    Article  MathSciNet  ADS  Google Scholar 

  19. Heller, D.: “Some aspects of the cyclic reduction algorithm for block tri-diagonal linear systems”, SIAM J. Numer. Anal., 13 (1976) no.4 pp 484–496.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pieter Wesseling

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Hoogendoorn, C.J., van der Meer, T.H. (1987). Convection-Diffusion Phenomena and a Navier-Stokes Processor. In: Wesseling, P. (eds) Research in Numerical Fluid mechanics. Notes on Numerical Fluid Mechanics, vol 17. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-89729-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89729-9_5

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-08090-7

  • Online ISBN: 978-3-322-89729-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics