Skip to main content

Quantum Monte Carlo Simulations and Weak-Coupling Approximations for the Three-Band Hubbard Model

  • Chapter
Numerical Simulation in Science and Engineering

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 48))

  • 50 Accesses

Summary

We study the three-band Hubbard model for the cuprate superconductors using Quantum Monte Carlo simulations and the fluctuation exchange approximation including a self-consistent many-body renormalization of the single-particle propagator. The energy dispersion of the low-lying one-particle excitations is in very good agreement with spectroscopic measurements for a hole doping concentration δ = 0.25 of the CuO2 planes. At the same doping, we examine the spin susceptibility yielding a non-ordered phase with short-range incommensurate fluctuations near the antiferromagnetic wave vector. In the superconducting regime, the interaction vertex for the pairing correlation function in the extended s-wave channel shows a maximum for δ = 0.20, resembling the dependence of transition temperature Tc on doping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For review articles on theoretical and experimental approaches to the high temperature superconductors see, for example: Proceedings of the International Conference, Kanazawa, Physica C 185–189 (1991).

    Google Scholar 

  2. For a review article concerning QMC techniques applied to Hubbard model see: W. von der Linden, Physics Reports, 220, 53 (1992), and references therein.

    Google Scholar 

  3. G. Dopf, A. Muramatsu, W. Hanke, Phys. Rev. Lett. 68, 353 (1992).

    Article  Google Scholar 

  4. G. Dopf, J. Wagner, P. Dieterich, A. Muramatsu, and W. Hanke, Phys. Rev. Lett. 68, 2082 (1992).

    Article  Google Scholar 

  5. G. Dopf, A. Muramatsu, W. Hanke, Europhys. Lett. 17, 559 (1992).

    Article  Google Scholar 

  6. R. T. Scalettar et al. Phys. Rev. B 44, 770 (1991).

    Article  Google Scholar 

  7. S. R. White et al., Phys. Rev. B 40, 506 (1989).

    Article  Google Scholar 

  8. E. Y. Loh et al., Phys. Rev. B 41, 9301 (1990).

    Article  Google Scholar 

  9. N. E. Bickers and D. J. Scalapino, Annals of Physics 193, 207 (1989).

    Article  Google Scholar 

  10. R. Putz, P. Dieterich, and W. Hanke, Helv. Phys. Acta 65, 433 (1992).

    Google Scholar 

  11. J. Luo and N. E. Bickers, Phys. Rev. B 47, 12153 (1993).

    Article  Google Scholar 

  12. C. M. Varma, et al., Solid State Comm. 62, 681 (1987).

    Article  Google Scholar 

  13. V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).

    Article  Google Scholar 

  14. A. K. McMahan, R. M. Martin, and S. Satpathy, Phys. Rev. B 38, 6650 (1988).

    Article  Google Scholar 

  15. M. S. Hybertsen, M. Schlüter, and N. E. Christensen, Phys. Rev. B 39, 9028 (1989).

    Article  Google Scholar 

  16. N. Nücker et al., Phys. Rev. B 37, 5158 (1988).

    Article  Google Scholar 

  17. P. W. Anderson, Science 235, 1196 (1987).

    Article  Google Scholar 

  18. J. Hubbard, Proc. Roy. Soc. A276, 238 (1963).

    Google Scholar 

  19. R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278 (1981).

    Article  Google Scholar 

  20. J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).

    Article  Google Scholar 

  21. H. F. Trotter, Prog. Am. Math. Soc.10, 545 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Suzuki, Prog. Theo. Phys.56, 1454 (1976).

    Article  MATH  Google Scholar 

  23. J. Hubbard, Phys. Rev. Lett.3, 77 (1959).

    Article  Google Scholar 

  24. J. E. Hirsch, Phys. Rev. B 28, 4059 (1983).

    Article  Google Scholar 

  25. For a comprehensive review see e.g.: Dieter W. Heermann, Computer Simulation Methods in Theoretical Physics, Springer, Berlin-Heidelberg, (1986).

    Google Scholar 

  26. E. Y. Loh and J. E. Gubernatis, in: Electronic Phase Transistions, ed. by W. Hanke and Y. V. Kopaev, North-HollandAAA (1992).

    Google Scholar 

  27. A. L. Fetter and J. D. Walecka, Quantum-Theory of Many Particle Systems, New York (1971).

    Google Scholar 

  28. A. Muramatsu, G. Zumbach, X. Zotos, Int. J. Mod. Phys. C 3, 185 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  29. J. W. Serene and D. W. Hess, Phys. Rev. B 44, 3391 (1991).

    Article  Google Scholar 

  30. G. Mante et al. Z. Phys. B 80, 181 (1990).

    Article  Google Scholar 

  31. S. R. White et al. Phys. Rev. Lett. 63, 1523 (1989).

    Article  Google Scholar 

  32. H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).

    Article  Google Scholar 

  33. C. de Dominicis and P. C. Martin, J. Math. Phys. 5, 14 (1964); ibid., 31 (1964).

    Article  Google Scholar 

  34. N. E. Bickers and S. R. White, Phys. Rev. B 43, 8044 (1991).

    Article  Google Scholar 

  35. J. Rossat-Mignod et al., Physica B 169, 58 (1991); Physica C 185–189, 86 (1991).

    Article  Google Scholar 

  36. J. M. Tranquada et al., Phys. Rev. B 46, 5561 (1992).

    Article  Google Scholar 

  37. T. E. Mason, G. Aeppli, and H. A. Mook, Phys. Rev. Lett. 68, 1414 (1992).

    Article  Google Scholar 

  38. G. Dopf, A. Muramatsu, and W. Hanke, Phys. Rev. B 41, 9264 (1990).

    Article  Google Scholar 

  39. J. B. Torrance et al., Phys. Rev. Lett. 61, 1127 (1988), and references therein.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael Griebel Christoph Zenger

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Putz, R., Endres, H., Muramatsu, A., Hanke, W. (1994). Quantum Monte Carlo Simulations and Weak-Coupling Approximations for the Three-Band Hubbard Model. In: Griebel, M., Zenger, C. (eds) Numerical Simulation in Science and Engineering. Notes on Numerical Fluid Mechanics (NNFM), vol 48. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-89727-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89727-5_12

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-07648-1

  • Online ISBN: 978-3-322-89727-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics