Skip to main content

Spherical Spline Approximation and its Application in Physical Geodesy

  • Chapter
Geophysical Data Inversion Methods and Applications

Part of the book series: Theory and Practice of Applied Geophysics ((THPAG))

Abstract

Until recently, spherical harmonics have constituted the class of functions used more frequently than others to approximate functions on the (unit) sphere. The basic reason was because of their polynomial nature and their simple mathematical structure. There are, however, several disadvantages in applying spherical harmonics, for example the computability of spherical harmonics of higher orders, oscillating properties in interpolation, and convergence problems in series expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aronszjain, N.: Theory of Reproducing Kernels. Trans. Am. Math. Soc., 68, 337–404 (1950)

    Article  Google Scholar 

  2. Dieudonne, J.: Foundation of Modern Analysis. Academic Press, New York, London, 1969

    Google Scholar 

  3. Dongarra, J.J., Bunch, J.R., Moler, C.B., Stewart, G.W.: LINPACK User’s Guide. SIAM, Philadelphia, 1979

    Google Scholar 

  4. Eskin, G.I.: Boundary Value Problems for Elliptic Pseudodifferential Equations. Translations of Math. Monographs, Vol. 52, American Mathematical Society, Providence, RI, 1981

    Google Scholar 

  5. Euler, H.J., Groten, E., Hausch, W., Stock, B.: Precise Geoid Computations at Mountaineous Coastlines in View of Vertical Datum Determinations. Veröffentlichung des Zentralinstituts für Physik der Erde, Akademie der Wiss. der DDR, Nr. 81 Teil I, 109–139 (1985)

    Google Scholar 

  6. Euler, H.J. Groten, E., Hausch, W., Kling, Th.: New Results Obtained for Detailed Geoid Approximations. Boll. Geod. Sci. Aff., N. 4, (1986)

    Google Scholar 

  7. Freeden, W.: Eine Klasse von Integralformeln der mathematischen Geodäsie. Veröff. Geod. Inst. RWTH Aachen, Heft Nr. 27, 1979

    Google Scholar 

  8. Freeden, W.: On Spherical Spline Interpolation and Approximation. Math. Meth. in the Appl. Sci., 3, 551–575, (1981 a)

    Article  Google Scholar 

  9. Freeden, W.: On Approximation by Harmonie Splines. Manuscripta Geodaetica, vol. 6, 193–244 (1981 b)

    Google Scholar 

  10. Freeden, W.: On the Permanence Property in Spherical Spline Interpolation. The Ohio State University, Department of Geodetic Science and Surveying, Columbus (Ohio), Report No. 341, 1982

    Google Scholar 

  11. Freeden, W.: Spherical Spline Interpolation: Basic Theory and Computational Aspects. J. Comp. Appi. Math., 11, 367–375 (1984)

    Article  Google Scholar 

  12. Freeden, W.: Ein Konvergenzsatz in sphärischer Spline-Interpolation. Zeitschrift für Vermessungswesen (ZfV), 109, 569–576 (1984)

    Google Scholar 

  13. Freeden, W.: A Spline Interpolation Method for Solving Boundary Value Problems of Potential Theory. Numer. Math. Part. Diff. Equations, 3, 375–398 (1987)

    Article  Google Scholar 

  14. Freeden, W., Hermann, P.: Uniform Approximation by Spherical Spline Interpolation. Math. Z., 193, 265–275 (1986)

    Article  Google Scholar 

  15. Greville, T.N.E.: Introduction to Spline Functions, in: Theory and Applications of Spline Functions (T.N.E. Greville, ed.), Academic Press, New York, London, 1–35, 1969

    Google Scholar 

  16. Heiskanen, W.A., Moritz, H.: Physical Geodesy. W.H. Freeman and Company, San Francisco, London, 1967

    Google Scholar 

  17. Kling, Th., Becker,M., Euler, H.J., Groten, E.: Studien zur detaillierten Geoidberechnung. Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften, Reihe B, Nr. 285, 1987

    Google Scholar 

  18. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer Verlag, Berlin, Heidelberg, New York, 1966

    Google Scholar 

  19. Meinguet, J.: Multivariate Interpolation at Arbitrary Points Made Simple. J. Appl. Math. Physics (ZAMP), 30, 292–304 (1979)

    Article  Google Scholar 

  20. Meissl, P.: Hilbert Spaces and their Application to Geodetic Least Squares Problems. Boll. Geod. Sci. Äff., XXXV (1), 181–210 (1976)

    Google Scholar 

  21. Müller CI.: Spherical Harmonics. Lecture Notes in Mathematics 17, Springer-Verlag, Berlin-Heidelberg-New York, 1966

    Google Scholar 

  22. Reuter, R.: Über Integralformeln und harmonische Splinefunktionen. Veröff. Geod. Inst. RWTH Aachen, Heft Nr. 33, (1982)

    Google Scholar 

  23. Schoenberg, I.J.: On Trigonometrie Spline Interpolation. J. Math. Mech., 13, 795–825 (1964)

    Google Scholar 

  24. Schumaker, L.L.: Spline Functions: Basic Theory. John Wiley & Sons, New York, Chichester, Brisbane, Toronto, (1981)

    Google Scholar 

  25. Treves, F.: Introduction to Pseudodifferential and Fourier Integral Operators. Plenum Press, New York-London, (1980)

    Google Scholar 

  26. Wahba, G.: Spline Interpolation and Smoothing on the Sphere. SIAM J. Sci. Stat. Comput., 1–15 (1981)

    Google Scholar 

  27. Yamabe, H.: On an Extension of Helly’s Theorem. Osaka Math. J., 15–22 (1950)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas Vogel Charles O. Ofoegbu Rudolf Gorenflo Bjorn Ursin

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Freeden, W. (1990). Spherical Spline Approximation and its Application in Physical Geodesy. In: Vogel, A., Ofoegbu, C.O., Gorenflo, R., Ursin, B. (eds) Geophysical Data Inversion Methods and Applications. Theory and Practice of Applied Geophysics. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-89416-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89416-8_6

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-06396-2

  • Online ISBN: 978-3-322-89416-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics