Skip to main content

The Computation of Steady Solutions to the Euler Equations: A Perspective

  • Chapter

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 26))

Abstract

It is generally believed that the Navier-Stokes equations are necessary and sufficient for the description of laminar and turbulent flows. In the field of computational fluid dynamics (CFD), therefore, a major effort is made to develop accurate, robust and efficient computer codes for the numerical integration of these equations. The stimulus to this development comes in particular from the aerospace sciences, where the interest lies predominantly in predicting steady or almost steady flows. Most codes, therefore, do not aim at any temporal accuracy, thus making room for an extra computational effort to improve the spatial accuracy. This is no luxury, since the high-Reynolds-number flows studied with those codes exhibit very thin transition layers - boundary layers, vortex sheets and shock waves - separating the smoother regions. If these layers are not properly resolved on the adopted computational grid, numerical noise and even instabilities may arise, leading to losses of accuracy and efficiency. Finding the location of those layers is a problem of pattern recognition, the solution of which requires a fair share of the computational budget.

The greater part of this manuscript was written while the author was in the Department of Mathematics and Information Science, Delft University of Technology, Delft, The Netherlands.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.W. Boerstoel, Numerical methods, in: Test Cases for Inviscid Flow Field Methods, Report of the Agard Fluid Dynamics Panel Working Group 07, AGARD Advisory Report No. 211 (1985), 3.1–3.7.

    Google Scholar 

  2. K.G. Powell, Vortical solutions of the conical Euler equations, thesis, Department of Aeronautics and Astronautics, MIT, Cambridge, MA, 1987.

    Google Scholar 

  3. B. van Leer, Upwind-difference methods for aerodynamic problems governed by the Euler equations, in: Lectures in Applied Mathematics, Vol. 23, Part 2, 327–336, AMS, Providence, 1985.

    Google Scholar 

  4. W.K. Anderson, J.L. Thomas and B. Van Leer, Comparison of finite-volume flux-vector splittings for the Euler equations, AIAA J. 24 (1986), 1453–1460.

    Article  ADS  Google Scholar 

  5. B. van Leer, Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second-order scheme, J. Comput. Phys. 14 (1974), 361–370.

    Article  ADS  MATH  Google Scholar 

  6. P. Colella and P.R. Woodward, The piecewise-parabolic method (PPM) for gasdynamical calculations, J. Comput. Phys. 54 (1984), 174–201.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. S.F. Davis, A rotationally biased upwind difference scheme for the Euler equations, J. Comput. Phys. 56 (1984), 65–92.

    Article  ADS  MATH  Google Scholar 

  8. A. Harten, private communication (1980).

    Google Scholar 

  9. F. Casier, H. Deconinck and Ch. Hirsch, A class of bidiagonal schemes for solving the Euler equations, AIAA J. 22 (1983), 1556–1563.

    Article  MathSciNet  ADS  Google Scholar 

  10. K.W. Morton, Generalized Galerkin methods for hyperbolic problems, Oxford University Computing Laboratory, Numerical Analysis Group, Report No. 84/1 (1984).

    Google Scholar 

  11. B. van Leer and W.A. Mulder, Relaxation methods for hyperbolic conservation laws, in: Numerical Methods for the Euler Equations of Fluid Dynamics, eds. F. Angrand, A. Dervieux, J.A. Désidéri and R. Glowinski, pp. 312–333, SIAM, Philadelphia, 1985.

    Google Scholar 

  12. R.M. Beam and R.F. Warming, An implicit finite-difference algorithm for hyperbolic systems in conservation-law form, J. Comput. Phys. 22 (1976), 87–110.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. J.L. Thomas, B. van Leer and R.W. Walters, Implicit flux-split schemes for the Euler equations, AIAA Paper AIAA 85–1680 (1985).

    Google Scholar 

  14. W.A. Mulder, Multigrid relaxation for the Euler equations, J. Comput. Phys. 60 (1985), 235–252.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. P.J. Hemker and S.O. Spekreyse, Multigrid solutions of the steady Euler equations, in: Notes on Numerical Fluid Dynamics, Vol. 11, 33–44, Vieweg, Braunschweig, 1985.

    Google Scholar 

  16. W. Schröder and D. Hänel, A comparison of several MG-methods for the solution of the time-dependent Navier-Stokes equations, in: Lecture Notes in Mathematics Vol. 1228, 149–165, Springer, Berlin, 1985.

    Google Scholar 

  17. A. Jameson, W. Schmidt and E. Turkel, Numerical solution of the Euler equations by finite-volume methods using Runge-Kutta time-stepping, AIAA Paper 81–1259 (1981).

    Google Scholar 

  18. R. Vichnevetsky, New stability theorems concerning one-step numerical methods for ordinary differential equations, in: Math. Comput. Simulation Vol. 25, 199–205, North-Holland, Amsterdam, 1983.

    Google Scholar 

  19. I.P.E. Kinnmark and W.G. Gray, One-step integration methods with maximum stability regions, in: Math. Comput. Simulation Vol. 26, 87–92, North-Holland, Amsterdam, 1984.

    Google Scholar 

  20. P. Sonneveld and B. van Leer, A minimax problem along the imaginary axis, Nieuw Archief voor Wiskunde (4), 3 (1985), 19–22.

    MATH  Google Scholar 

  21. A. Jameson, Numerical solution of the Euler equations for compressible inviscid fluids, in: Numerical Methods for the Euler Equations of Fluid Dynamics, eds. F. Angrand, A. Dervieux, J.A. Désidéri and R. Glowinski, pp. 199–245, SIAM, Philadelphia, 1985.

    Google Scholar 

  22. B. van Leer, Multi-stage marching methods for the Euler equations, in preparation.

    Google Scholar 

  23. A. Brandt, S.F. McCormick and J. Ruge, Algebraic multigrid (AMG) for sparse matrix equations, in: Sparsity and its Applications, ed. D.J. Evans, pp. 257–284, Cambridge University Press, Cambridge, 1984.

    Google Scholar 

  24. A. Lerat and J. Sides, Implicit transonic calculations without artificial viscosity or upwinding, in: Proceedings of the GAMM Workshop on the Numerical Simulation of Compressible Euler Flows, Rocquencourt, June 10–13, 1986, eds. A. Dervieux, J. Périaux, A. Rizzi and B. van Leer, Vieweg, Bramschweig, 1988.

    Google Scholar 

  25. M. G. Hall, Cell-vertex multigrid schemes for solution of the Euler equations, in: Numerical methods for fluid dynamics II, eds. K.W. Morton and M.J. Baines, Clarendon, Oxford, 1986.

    Google Scholar 

  26. A. Jameson, A vertex-based multigrid algorithm for three-dimensional compressible flow calculations, in: Numerical Methods for Compressible Flow-Finite Difference, Element and Volume Techniques, eds. T.E. Tezduar and T.J.R. Hughes, ASME Publication AMD 78, 1986.

    Google Scholar 

  27. R. Löhner, K. Morgan, J. Peraire, O.C. Zienkiewicz and L. Kong, Finite-element methods for compressible flow, in: Numerical methods for fluid dynamics II, eds. K.W. Morton and M.J. Baines, Clarendon, Oxford, 1986.

    Google Scholar 

  28. B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp. 31 (1977), 629–651.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. J.L. Thomas and M.D. Salas, Far-field boundary conditions for transonic lifting solutions to the Euler equations, AIAA Paper AIAA-85–0020 (1985).

    Google Scholar 

  30. L. Ferm and B. Gustafsson, Far-field boundary conditions for steady-state solutions to hyperbolic equations, in: Proceedings of the First International Conference on Hyperbolic Problems, Jan. 13–17, 1986, St.-Étienne.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alain Dervieux Bram Van Leer Jacques Periaux Arthur Rizzi

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Friedr Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

van Leer, B. (1989). The Computation of Steady Solutions to the Euler Equations: A Perspective. In: Dervieux, A., Leer, B.V., Periaux, J., Rizzi, A. (eds) Numerical Simulation of Compressible Euler Flows. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 26. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-87875-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-87875-5_2

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-528-07626-9

  • Online ISBN: 978-3-322-87875-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics