Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 60))

Summary

A parallel numerical optimization method for the airplane wing design has been established. The extension of traditional Evolution Strategies by new and alternative methods combined with a load management for parallel processes leads to the MEPO optimization system. The concept of the system allows beneficial usage of parallel processing features for running the optimization algorithms as well as the application-specific simulation codes. In this way unacceptable turn-aroundtimes in the design process of airplane wings can be reduced significantly. The low amount of communications between computer processor units makes it possible to employ workstation clusters efficiently. Coupled with simulation codes of DASA and DLR, a powerful program system for optimizing airplane wing designs has been created. Highly promising results in the calculation of wing shapes for the future Airbus A3XX now lead to a commercially usable program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, K.; Paralleles Rechnen in der Transportflugzeugentwicklung - Status und Ausblick, in: Matthies, H.; Schäle, J. (Herausgeber); Paralleles und Verteiltes Rechnen, Shaker Verlag, Aachen (1996).

    Google Scholar 

  2. Voegt, S; Lehmann, S; Axmann, J.K.; Wiedereintrittsbahnen und ihre Optimierung durch einen Evolutionsalgorithmus, DGLR-Fachausschuß-Sitzung: Flugleistungen und Bahnen, Ottobrunn (1991).

    Google Scholar 

  3. Axmann, J.K.; Die Optimierung von Raumfiugmissionen mit Evolutionsalgorithmen auf Parallelrechnern, DGLR-Fachausschuß-Sitzung: Flugleistungen und Bahnen, Braunschweig (1993).

    Google Scholar 

  4. Axmann, J K; Raumflugtechnische Optimierung mit adaptiven Evolutionsalgorithmen auf Parallelrechnern, Jahrbuch der Deutschen Gesellschaft für Luft-und Raumfahrt, 94-E1074, Band I (1994).

    Google Scholar 

  5. Axmann, J.K.; Parallelrechner-Nutzung zur mathematisch-technischen Optimierung mit Evolutionsalgorithmen, in: Rönsch, W.; Schäle, J. (Herausgeber); Parallelisierung im wissenschaftlichen Rechnen, Informatikberichte 93–04, TU Braunschweig (1993).

    Google Scholar 

  6. Hadenfeld, M.; Axmann, J.K.; Parallele Tragflügelprofil-Optimierungen auf Workstation-Clustern, in: Matthies, H.; Schäle, J. (Herausgeber); Paralleles und Verteiltes Rechnen, Shaker Verlag, Aachen (1996).

    Google Scholar 

  7. Forbrich, D.; Van der Velden, A.; Dargel, G.; personal communication (1996).

    Google Scholar 

  8. Dargel, G.; Ein Programmsystem für die Berechnung transsonischer Profil-und konischer Flügelumströmungen auf der Basis gekoppelter Potential-und Grenzschichtlösungen, STAB 92–07, B. STAB-Fachsymposium, Köln (1992).

    Google Scholar 

  9. Dargel, G.; Thiele, P.; Viscous Transonic Airfoil Flow Simulation by an Efficient ViscousInviscid Interaction Method, AIAA-87–0412, Reno, Nevada (1987).

    Google Scholar 

  10. Eppler, R.; Somers, D.M.; A Computer Program for the Design and Analysis of Low-Speed Airfoils, NASA Technical Memorandum 80210, National Technical Information Service, Springfield, Virginia (1980).

    Google Scholar 

  11. Sobieczky, H.; Progress in inverse design and optimization in aerodynamics, AGARD 1989, paper 1 (1989).

    Google Scholar 

  12. Greff, E.; Mantel, J.; An engineering approach to the inverse transonic wing design problem, Communication in Applied Numerical Methods 2, pp. 47–56 (1986).

    Article  MATH  Google Scholar 

  13. Reuther, J.; Jameson, A.; Aerodynamic Shape Optimization of Wing and Wing-Body Configurations Using Control Theory, AIAA 95–0123 (1995).

    Google Scholar 

  14. Hicks, R. M.; Henne, P. A.; Wing design by numerical optimization, AIAA 79–0080 (1979).

    Google Scholar 

  15. Van der Velden, A.; Aerodynamic Shape Optimization, AGARD R 803, paper 3 (1994).

    Google Scholar 

  16. Kroll, N.; Radespiel, R.; Rossow, C.C.; and Eisfeld, B.; Bleecke, H.-M.; Kroll, N.; Ritzdorf, H.; Structured Grid Solvers I and II - Accurate and Efficient Flow Solvers for 3D Applications on Structured Meshes, AGARD Report R-807 (1995).

    Google Scholar 

  17. Nelder, J.A.; Mead R.; The Downhill Simplex Algorithm, Computer Journal, Vol. 7, S. 308 (1965).

    Article  MATH  Google Scholar 

  18. Kirkpatrick S.; Gerlatt C.D.; Vecchi M.P.; Optimization by Simulated Annealing, Science, Vol. 220 (1983).

    Google Scholar 

  19. Rechenberg, I.; Evolutionsstrategie: Optimierung technischer Systeme nach dem Prinzip der biologischen Evolution, Frommann-Holzboog Verlag, Stuttgart (1972).

    Google Scholar 

  20. Schwefel, H.-P.; Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, Birkhäuser Verlag, Basel und Stuttgart (1977).

    Book  MATH  Google Scholar 

  21. Holland, J.; Adaption in Natural and Artificial Systems, University of Michigan Press, Ann Arbor (1975).

    MATH  Google Scholar 

  22. Goldberg, D. E.; Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, Massachusetts (1989).

    Google Scholar 

  23. Fogel, L.J.; Owens, A.J.; Walsh, M.J.; Artifical Intelligence through Simulated Evolution, John Wiley and Sons, New York (1966).

    Google Scholar 

  24. Axmann, J.K.; Krüger, S.; Lastadaptiver Einsatz eines parallelen Optimierungscodes auf Basis Evolutionärer Algorithmen auf heterogenen Workstation-Clustern, in: Cap, C. (Herausgeber); Workstations und ihre Anwendungen, vdf-Hochschulverlag, Zürich (1996).

    Google Scholar 

  25. Axmann, J.K.; Van de Velde, A.; Nuclear Fuel Management Optimization Using Adaptive Evolutionary Algorithms with Heuristics, Proceedings: Int. Conference on the Physics of Reactors, Physor 96, Mito (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Axmann, J.K., Hadenfeld, M., Frommann, O. (1997). Parallel Numerical Airplane Wing Design. In: Körner, H., Hilbig, R. (eds) New Results in Numerical and Experimental Fluid Mechanics. Notes on Numerical Fluid Mechanics (NNFM), vol 60. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-86573-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-86573-1_6

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-86575-5

  • Online ISBN: 978-3-322-86573-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics