Skip to main content

Bioresponse-Linked Analysis Based on Acetylcholinesterase Inhibition

  • Chapter
Book cover Bioresponse-Linked Instrumental Analysis

Part of the book series: Teubner-Reihe UMWELT ((TRU))

  • 83 Accesses

Abstract

Acetylcholinesterase is a key enzyme in the nervous system. This protein is the biological target of the predominant insecticides used in agriculture and other neurotoxins such as algal toxins. Its high sensitivity, rapid turn-over, and stability promoted its use in analytical applications to detect pesticides at low concentrations in environmental samples. It is possible today to produce this enzyme recombinantly in different systems and to engineer mutated forms based on structural information and computer modeling techniques leading to a large variety of enzyme properties. In this chapter the main features of acetylcholinesterase with regard to its biotechnological use and the last developments in biosensors are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abad, J.M., Pariente, F., Hernandez, L., Abruiia, H.D., Lorenzo, E. (1998): Determination of organophosphorus and carbamate pesticides using a piezoelectric biosensor. Anal. Chem. 70, 2848–2855.

    Google Scholar 

  • Axelsen, P.H., Harel, M., Silman, I., Sussman, J.L. (1994): Structure and dynamics of the active site gorge of acetylcholinesterase: synergistic use of molecular dynamics simulation and X-ray crystallography. Protein Sci. 3, 188–197.

    Article  CAS  Google Scholar 

  • Bachmann, T.T., Schmid, R.D. (1999): A disposable, multielectrode biosensor for rapid simultaneous detection of the insecticides paraoxon and carbofuran at high resolution. Anal. Chim. Acta 401, 95–103.

    Google Scholar 

  • Bachmann, T.T., Schmid, R.D., Leca, B., Marty, J.-L., Vilatte, F., Fournier, D. (1999): Improved discrimination of organophosphate and carbamate insecticides using recombinant mutants of Drosophila acetylcholinesterase and a disposable multielectrode biosensor. Biosensors and Bioelectronics, in print.

    Google Scholar 

  • Bartolucci, C., Perola, E., Cellai, L., Brufani, M., Lamba, D. (1999): “Back door” opening implied by the crystal structure of a carbamoylated acetylcholinesterase. Biochemistry 38, 5714–5719.

    Article  CAS  Google Scholar 

  • Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.F., Jr., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., Tasumi, M. (1977): The protein data bank. A computer-based archival file for macromolecular structures. Eur. J. Biochem. 80, 319–324.

    Article  CAS  Google Scholar 

  • Beutler, H.O. (1993): pp 19–36. In: Biochemische Methoden zur Schadstofferfassung in Wasser (GDCh, F. W. i. d., ed.). VCH: Weinheim.

    Google Scholar 

  • Bourguet, D., Raymond, M., Fournier, D., Malcolm, C.A., Toutant, J.P., Arpagaus, M. (1996): Existence of two acetylcholinesterases in the mosquito Culex pipiens

    Google Scholar 

  • Chaabihi, H., Fournier, D., Fedon, Y., Bossy, J.P., Ravallec, M., Devauchelle, G., Cerutti, M. (1994): Biochemical characterization of Drosophila melanogaster acetylcholinesterase expressed by recombinant baculoviruses. Biochem. Biophys. Res. Commun. 203, 734–742.

    Google Scholar 

  • Cousin, X., Hotelier, T., Lievin, P., Toutant, J.P., Chatonnet, A. (1996): A cholinesterase genes server ( ESTHER ): A database of cholinesterase-related sequences for multiple alignments, phylogenetic relationships, mutations and structural data retrieval. Nucleic Acids Res. 24, 132–136.

    Google Scholar 

  • Cygler, M., Grochulski, P., Kazlauskas, R.J., Schrag, J.D., Bouthillier, F., Rubin, B., Serreqi, A.N., Gupta, A.K. (1994): A structural basis for the chiral preferences of lipases. J. Am. Chem. Soc. 116, 3180–3186.

    Google Scholar 

  • DIN 38415–1 (1995): German standard methods for the examination of water, waste water and sludge.

    Google Scholar 

  • Duval, N., Bon, S., Silman, I., Sussman, J., Massoulié, J. (1992): Site-directed mutagemesis of active-site-related residues in Torpedo acetylcholinesterase. Presence of a glutamic acid in the catalytic triad. FEBS Letts. 309, 421–423.

    Google Scholar 

  • Ellmann, G.L., Courtey, K.D., Andres, V., Featherstone, R.M. (1961): A new and rapid determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–92.

    Google Scholar 

  • EPA Method 8141A. In: EPA Method 8141A. US Environmental Protection Agency.

    Google Scholar 

  • Estrada-Mondaca, S.a.F.D. (1998): Stabilisation of recombinant drosophila acetylcholinesterase. Prot. Exp. Purif. 12, 166–172.

    Google Scholar 

  • Evtugyn, G.A., Budnikov, H.C., Nikolskaya, E.B. (1996): Influence of surfaceactive compounds on the response and sensitivity of cholinesterase biosensors for inhibitior determination. Analyst 121, 1911–1915.

    Article  CAS  Google Scholar 

  • Fournier, D., Bride, J.M., Karch, F., Bergé, J.B. (1988): Acetylcholinesterase form Drosophila melanogaster. Identification of two subunits encoded by the same gene. FEBS Letts. 238, 333–337.

    Google Scholar 

  • Ghindilis, A.L., Morzunova, T.G., Barmin, A.V., Kurochkin, I.N. (1996): Potentiometric biosensors for cholinesterase inhibitor analysis based on mediatorless bioelectrocatalysis. Biosensors and Bioelectronics 11, 837–880.

    Article  Google Scholar 

  • Grauso, M., Culetto, E., Combes, D., Fedon, Y., Toutant, J.P., Arpagaus, M. (1998): Existence of four acetylcholinesterase genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. FEBS Letts. 424, 279–284.

    Article  CAS  Google Scholar 

  • Guilbault, G.G., Ngeh-Ngwainbi (1988): pp. 187. In: Analytical uses of immobilized biological compounds for detection, medical and industrial uses (Guilbault, G.G., Mascini, M., eds.). Reidel, The Netherlands, Dordrecht.

    Google Scholar 

  • Hall, M.C., Spierer, P. (1986): The Ace locus of drosophila melanogaster: Structural gene for acetylcholinesterase with an unusual 5’ leader. EMBO J. 5, 2949–2954.

    CAS  Google Scholar 

  • Harel, M., Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M., Hirth, C., Axelsen, P.H., Silman, I., Sussman, J.L. (1993): Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA 90, 9031–9035.

    Google Scholar 

  • Hart, A.L., Collier, W.A., Janssen, D. (1997): The response of screen printed enzyme electrodes containing cholinesterase to organophosphates in solution and from commercial formulations. Biosensors and Bioelectronics 12, 645–654.

    Article  CAS  Google Scholar 

  • Hartley, I.C., Hart, J.P. (1994): Amperometric measurement of organophosphate pesticides using a screen printed disposable sensor and biosensor based on cobalt phtalocyanine. Anal. Proc. Incl. Anal. Comm. 31, 333–336.

    Google Scholar 

  • Heim, J., Schmidt-Dannert, C., Atomi, H., Schmid, R.D. (1998): Functional expression of a mammalian acetylcholinesterase in Pichia pastoris: Comparison to acetylcholinesterase, expressed and reconstituted from Escherichia coli. Biochim. Biophys. Acta 1396, 306–319.

    Google Scholar 

  • Herzsprung, P., Weil, L., Quentin, K.E. (1989): Determination of organophosphorus compounds and carbamates by their inhibition of cholinesterase. Part 1: Inhibition values on immobilized cholinesterase. Zeitsch. Wasser u. Abwasser Forsch. 22, 67–72.

    Google Scholar 

  • Hussein, A.S., Grigg, M.E., Selkirk, M.E. (1999): Characterisation of a somatic amphiphilic acetylcholinesterase with properties distinct from the secreted enzymes. Exp. Parasitol. 91, 144–150.

    Google Scholar 

  • Johnson, C.D., Russel, R.L. (1983): Multiple molecular forms of acetylcholinesteraee in the nematode Caenorhabditis elegans. J. Neurochem. 41, 30–46.

    Article  CAS  Google Scholar 

  • Kindervater, R., Künnecke, W., Schmid, R.D. (1990): Exchangeable immobilized enzyme reactor for enzyme inhibition tests in flow-injection analysis using a magnetic device. Determination of pesticides in drinking water. Anal. Chim. Acta 234, 223–226.

    Google Scholar 

  • Kulys, J., D’Costa, E.J. (1991): Printed amperometric sensor based on TCNQ and cholinesterase. Biosens. Bioelectr. 6, 109–115.

    Google Scholar 

  • Lacorte, S., Barcelo, D. (1995): Determination of organophosphorus pesticides and their transformation products in river waters by automated on-line solid-phase extraction followed by thermospray liquid chromatography-mass spectrometry. J. Chrom. A5 712, 103–112

    Google Scholar 

  • Liu, D.X., Jiang, H., Wang, Q.M., Chen, K.X., Ji, R.Y. (1998): Interpreting the effect of methyl group at the three carbon bridge of (-)-huperzine A on its anticholinesterase activity by molecular dynamics method. Bioorg. Med. Chem. Lett. 8, 419–422.

    Google Scholar 

  • Main, A.R. (1979): Mode of action of acetylcholinesterases. Pharmacol. Ther. 6, 579–628.

    Google Scholar 

  • Makower, A., Barmin, A., Morzunova, T., Eremenko, A.V., Kurochkin, I., Bier, F., Scheller, F.W. (1997): Affininty enzymometric assay for detection of organophosphorus compounds. Anal. Chim. Acta 357.

    Google Scholar 

  • Marcel, V., Gagnoux Palacio, L., Pertuy, C., Masson, P., Fournier, D. (1998): Two invertebrate acetylcholinesteraes show activation followed by inhibition with substrate concentration. Biochem. J. 329, 329–334.

    Google Scholar 

  • Massoulié, J., Toutant, J.P. (1988): Vertebrates cholinesterase: structure and types of interactions (Whittaker, V. P., ed.). Springer-Verlag. Berlin.

    Google Scholar 

  • Mccle, J., Coblent, W.B., Sapp, M., Rulewicz, G., Gaines, D.I., Hawkins, A., Ozment, C., Bearden, A., Merritt, S., Cunningham, J., Palmer, E., Contractor, A., Pezzementi, L. (1998): cDNA cloning, in vitro expression, and biochemical characterization of cholinesterase 1 and cholinesterase 2 from amphioxus-comparison with cholinesterase 1 and cholinesterase 2, produced in vivo. Eur. J. Biochem. 258, 419–429.

    Google Scholar 

  • Millard, C.B., Kryger, G., Ordentlich, A., Greenblatt, H.M., Harel, M., Raves, M.L., Segall, Y., Barak, D., Shafferman, A., Silman, I., Sussman, J.L. (1999): Crystal structures of aged phosphonylated acetylcholinesterase: nerve agent reaction products at the atomic level. Biochem. 38, 7032–7039.

    Article  CAS  Google Scholar 

  • Mionetto, N., Marty, J.-L., Karube, I. (1994): Acetycholinesterase in organic solvents for the detection of pesticides: Biosensor application. Biosens. Bioelectr. 9, 463–470.

    Google Scholar 

  • Mionetto, N., Morel, N., Massoulié, J., Schmid, R.D. (1997): Biochemical determination of insecticides via cholinesterases. 1. Acetylcholinesterase from rat brain: functional expression using a baculovirus system, and biochemical characterization. Biotechnol. Tech. 11, 805–812.

    Google Scholar 

  • Morel, N., Massoulie, J. (1997): Expression and processing of vertebrate acetylcholinesterase in the yeast Pichia pastoris. Biochem. J. 328, 121–129.

    Google Scholar 

  • Morelis, R.M., Coulet, P.R. (1990): A sensitive biosensor for choline and acetylcholine involving fast immobilisation of a bienzyme system on a disposable membrane. Anal. Chim. Acta 231, 27–32.

    Google Scholar 

  • is, D.L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S.M., Harel, M., Remington, S.J., Silman, I., Schrag, J. (1992): The alpha/beta hydrolase fold. Protein Eng. 5, 197–211.

    Article  CAS  Google Scholar 

  • Palchetti, I., Cagnini, A., DelCarlo, M., Coppi, C., Mascini, M., Turner, A.P.F. (1997): Determination of anticholinesterase pesticides in real samples using a disposable biosensor. Anal. Chim. Acta 337, 315–321.

    Google Scholar 

  • Palleschi, G., Bernabei, M., Cremisini, C., Mascini, M. (1992): Determination of organophosphorus insecticides with a choline electrochemical Sens. Act. B B7, 513–517.

    Article  Google Scholar 

  • Pleiss, J., Fischer, M., Peiker, M., Thiele, C., Schmid, R.D.: Lipase engineering database: Understanding and exploiting sequence-structure-function relationships. J. Mol. Catal. B: Enzym.

    Google Scholar 

  • Pleiss, J., Mionetto, N., Schmid, R.D. (1999): Probing the acyl binding site of macetylcholinesterase by protein engineering. J. Mol. Catal. B6, 287–296.

    Google Scholar 

  • Pleiss, J., Mionetto, N., Schmid, R.D. (1997): Protein engineering of rat brain acetylcholinesterase: a point mutation enhances sensitivity to pesticides. Prot. Eng. 10, 66–70.

    Google Scholar 

  • Radic, Z., Pickering, N.A., Vellom, D.C., Camp, S., Taylor, P. (1993): Three distinct domains in the cholinesterase molecule confer selectivity for acetyl-and butyrylcholinesterase inhibitors. Biochem. 32, 12074–12084.

    Article  CAS  Google Scholar 

  • Radic, Z., Duran, R., Vellom, D.C., Li, Y., Cervenansky, C., Taylor, P. (1994): Site of fasciculin interaction with acetylcholinesterase. J. Biol. Chem. 269, 11233–11239.

    Google Scholar 

  • Rosenberry, T.L. (1975): Acetylcholinesterase. Adv. Enzymol. Relat. Areas Mol. Biol. 43, 103–218.

    Google Scholar 

  • Saul, A. J., Zomer, E., Puopolo, D., Charm, S.E. (1995): Use of new rapid bioluminescence method for screening organophosphate and nmethylcarbamate insecticides in processed baby foods. J. Food Proc. 59, 306–311.

    Google Scholar 

  • Saxena, A., Redman, A.M., Jiang, X., Lockridge, O., Doctor, B.P. (1997): Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Biochem. 36, 14642–14651.

    Article  CAS  Google Scholar 

  • Saxena, A., Redman, A.M., Jiang, X., Lockridge, O., Doctor, B.P. (1999): Differences in active-site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Chem. Biol. Interact. 119–120, 61–69.

    Google Scholar 

  • Schmidt-Dannert, C., Kalisz, H.M., Safarik, I., Schmid, R.D. (1994): Improved properties of bovine erythrocyte acetylcholinesterase, isolated by papain cleavage. J. Biotechnol. 36, 231–237.

    Article  CAS  Google Scholar 

  • Seemann, J., Rapp, F.-R., Zell, A., Gauglitz, G. (1997): Classical and modern algorithms for the evaluation of data from sensor arrays. Fresenius J. Anal. Chem. 359, 100–106.

    Google Scholar 

  • Sigolaeva, L.V, Makower, A., Eremenko, A.V., Makhaeva, G.F., Malygin, V.V., Kurochkin, I.N., Scheller, F. (2000): Bioelectrochmical analysis of neuropathy target esterase activity in blood. Bioanal. Chem., submitted.

    Google Scholar 

  • Silman, I., Millard, C.B., Ordentlich, A., Greenblatt, H.M., Harel, M., Barak, D., Shafferman, A., Sussman, J.L. (1999): A preliminary comparison of structural models for catalytic intermediates of acetylcholinesterase. Chem. Biol. Interact. 119–120, 43–52.

    Google Scholar 

  • Skladal, P., Mascini, M. (1992): Sensitive detection of pesticides using amperometric sensors based on cobalt phtalocyanin-modified composite electrodes and immobillized cholinesterases. Biosens. Bioelectr. 7, 335–343.

    Google Scholar 

  • Stojan, J., Marcel, V., Estrada-Mondaca, S., Klaebe, A., Masson, P., Fournier, D. (1998): A putative kinetic model for substrate metabolisation by Drosophila acetylcholinesterase. FEBS Lett. 440, 85–8.

    Article  CAS  Google Scholar 

  • Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., Silman, I. (1991): Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253, 872–879.

    Article  CAS  Google Scholar 

  • Szegletes, T.M.W.D., Rosenberry, T.L. (1998): Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands. Biochem. 37, 4206–4216.

    Article  CAS  Google Scholar 

  • Tara, S., Helms, V., Straatsma, T.P., McCammon, J.A. (1999): Molecular dynamics of mouse acetylcholinesterase complexed with huperzine A. Biopolymers 50, 347–359.

    Article  CAS  Google Scholar 

  • TrinkwV (1986): Verordnung über Trinkwasser und über Wasser fir Lebensmittelbetriebe. BGBL I, 760–773.

    Google Scholar 

  • Vellom, D.C., Radic, Z., Li, Y., Pickering, N.A., Camp, S., Taylor, P. (1993): Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochem. 32, 12–17.

    Article  CAS  Google Scholar 

  • Villatte, F. (1998): These de Doctorat, Université Paris 6, P. and M. Curie, Paris. Villatte, F., Marcel, V., Estrada-Mondaca, S., Fournier, D. (1998): Engineering sensitive acetylcholinesterase for detection of organophosphate and carbamate insecticides. Biosens. Bioelectr. 13, 157–162.

    Google Scholar 

  • Watts, P., Wilkinson, R.G. (1977): The interaction of carbamates with acetylcholinesterase. Biochem. Pharmacol. 26, 757–761.

    Google Scholar 

  • Wittmann, C., Löffler, S., Zell, A., Schmid, R.D. (1997): pp. 343–352. In: Immunochemical Technology for Environmental Applications. American Chemical Society.

    Google Scholar 

  • Zhou, H.X., Wlodek, S.T., McCammon, J.A. (1998): Conformation gating as a mechanism for enzyme specificity. Proc. Natl. Acad. Sci. USA 95, 9280–9283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 B. G. Teubner GmbH, Stuttgart/Leipzig/Wiesbaden

About this chapter

Cite this chapter

Bachmann, T., Pleiss, J., Villatte, F., Schmid, R.D. (2001). Bioresponse-Linked Analysis Based on Acetylcholinesterase Inhibition. In: Hock, B. (eds) Bioresponse-Linked Instrumental Analysis. Teubner-Reihe UMWELT. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-86568-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-86568-7_5

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-00316-8

  • Online ISBN: 978-3-322-86568-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics