On Parallel Frequency Filtering

  • W. Weiler
  • G. Wittum
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)


The frequency filtering method is a robust and efficient ILU-like solver for large sparse systems (cf. [Wil,2]). Combining this method with the so-called Schur-complement DD method we obtain a fast parallel solver. In this context frequency filtering can be applied as solver inside the subdomains as well as for the treatment of the arising Schur-complements. Especially for those the method is well suited since it is highly parallelizable by recursively applying the same decomposition as to the original system. In this paper an implementation of the frequency filtering domain decomposition (FFDD) method on a multiprocessor system will be presented and the numerical results of some variants thereof will be discussed. The scaling behaviour of the algorithm for an increasing number of processors is almost optimal.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ba]
    Bastian,P.:vChannel -A routing software for Transputer systems.Preprint,IWR,Heidelberg,1991Google Scholar
  2. [BW]
    Björstad,P.E.,Widlund,O.B.:Iterative methods for the solution of elliptic problems on regions partitioned into substructures.SIAM J.Numer.Anal,23,1097–1120,(1986)CrossRefzbMATHMathSciNetGoogle Scholar
  3. [Dr]
    Dryija,M:A capacitance matrix method for Dirichlet problems on polygonal regions.Numer.Math.,39 (1),51–64,1982CrossRefMathSciNetGoogle Scholar
  4. [Hal]
    Haase,G.:Die nichtüberlappende Gebietszerlegungsmethode zur Parallelisie-rung und Vorkonditionierung des CG-Verfahrens.Preprint 92–10,IWR,Universität Heidelberg,1992Google Scholar
  5. [Ha2]
    Haase,G.,Langer,U.,Meyer,A.:The approximate Dirichlet domain decomposition method.Part I:An Algebraic Approach.Computing 47,137–151 (1991)zbMATHMathSciNetGoogle Scholar
  6. [Ha3]
    Haase,G.,Langer,U.,Meyer,A.:The approximate Dirichlet domain decomposition method.Part II:Applications to2nd-order elliptic b.v.p.s.Computing 47,153–167 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  7. [Wil]
    Wittum,G.:An ILU-based smoothing correction Hackbusch,W.(ed.):Parallel solvers.Proceedings of the sixth GAMM-Seminar,Kiel,Jan.25 to 27,1990.Notes on numerical fluid mechanics,Vieweg,Braunschweig i.Vb.Google Scholar
  8. [Wi2]
    Wittum,G.:Frequenzfilternde Zerlegungen -Ein Beitrag zur schnellen Lösung großer Gleichungssysteme.Teubner Skripten zur Numerik Band 1,Teubner,Stuttgart,1992Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1993

Authors and Affiliations

  • W. Weiler
    • 1
  • G. Wittum
    • 1
  1. 1.SFB 123Universität HeidelbergHeidelbergDeutschland

Personalised recommendations