Skip to main content

Capillary electrophoresis, instrumentation and modes

  • Chapter
  • 493 Accesses

Part of the book series: CE-Series ((CHROM,volume 3))

Abstract

The success of open tube capillaries over packed columns in gas chromatography (GC) initiated the development of open tubular liquid chromatography (OTLC) in the late 70ties, in an attempt to further increase the performance of high performance liquid chromatography (HPLC) [1]. Theoretical analysis of the chromatographic process clearly showed, that miniaturization of the separation column dimensions will lead to decreased band broadening and therefore to better and/or faster analysis. However, diffusion constants are 2 to 3 orders of magnitudes smaller in liquids compared to gaseous system. In combination with the Poiseuille flow profile of the pressure generated flow, which results in fast longitudinal transport in the middle of the column and slow transport near the column wall, this leads to a relatively large diffusion controlled contribution to band broadening. Consequendy, liquid separation systems did not show the same performance increase when switching from packed columns to open column operation compared to GC systems. Theoretical calculations indicated that only with extremely small capillaries of 10 μm inner diameter (ID) or less open capillary operation in liquids could outperform packed columns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Novotny, “Liquid chromatography in columns of capillary dimensions”, in “Microcolumn high performance liquid chromatography”, (ed. P. Kucera), Elsevier, 1984, Amsterdam, 194–259.

    Chapter  Google Scholar 

  2. V. Pretorius, B. Hopkins, and J.D. Schieke, “A new concept for high speed liquid chromatogramphy”, J. Chromatogr., 99 1974 23–30.

    Article  Google Scholar 

  3. J.W. Jorgenson, and K.D. Lukacs, “Zone electrophoresis in open tubular glass capillaries”, Anal. Chem., 53 1981 1298–1302.

    Article  Google Scholar 

  4. S. Hjerten, “Free zone electrophoresis”, Chromatogr. Rev., 9 1969 122–219.

    Article  Google Scholar 

  5. R.J. Nelson, A. Paulus, A.S. Cohen, A. Guttman, and B.L. Karger, “Use of Peltier thermoelectric devices to control temperature in high performance capillary electrophoresis”, J. Chromatogr., 450 1989 111–127.

    Article  Google Scholar 

  6. R.J. Wieme, “Theory of electrophoresis”, in “Chromatrography: A Lab Handbook of Chromatography and Electrophoresis Methods”, (ed. E. Heftmann), Van Norstrand, 1984, New York, 228–278.

    Google Scholar 

  7. A. Klockow, R. Amado, H.M. Widmer, and A. Paulus, “The influence of buffer composition on separation efficiency and resolution in capillary electrophoresis of 8-aminonaphthalene-1,3,6-trisulfonic acid labeled monosaccharides and complex carbohydrates”. Electrophoresis, 17 1996 110–119.

    Article  Google Scholar 

  8. J.C. Giddings, “Unified Separation Science”, John Wiley & Sons, Inc., 1991, New York.

    Google Scholar 

  9. R.G. Brownlee, and S.W. Compton, “Automated instmmentation for analytical capillary electrophoresis”, Am. Lab., 20 1988 10–17.

    Google Scholar 

  10. R.J. Nelson, and D.S. Burgi, “Temperature control in capillary electrophoresis”, in “Handbook of Capillary Electrophoresis”, (ed. J. P. Landers), CRC Press, 1994, Boca Raton, 549–562.

    Google Scholar 

  11. A. Cifuentes, W.T. Kok, and H. Poppe, “Capillary electrophoresis using air and helium as cooling fluids”, J. Microcolumn Separations, 7 1995 365–374.

    Article  Google Scholar 

  12. I.H. Grant, and W. Steuer, “Extended pathlength UV absorbance detector for capillary zone electrophoresis”, J. Microcolumn Sep., 2 1990 74.

    Article  Google Scholar 

  13. R.L. Chien, and D.S. Burgi, “Sample stacking of an extremly large injection volume in high performance capillary electrophoresis”. Anal. Chem., 64 1992 1046.

    Article  Google Scholar 

  14. E.E.P. Mikkers, P.M. Everarts, and T.E.P.M. Verheggen, “Isotachophoresis: Theory, Instmmentation and Application”, J. Chromatogr., 169 1979 11–20.

    Article  Google Scholar 

  15. A.E. Bmno, E. Gassmann, N. Perikles, and K. Anton, “On-column capillary flow cell utilizing optical waveguides for chromatographic applications”, Anal. Chem., 61 1989 876.

    Article  Google Scholar 

  16. S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, and T. Ando, “Electrokinetic separations with micellar solution and open-tubular capillaries”, Anal. Chem., 56 1984 111.

    Article  Google Scholar 

  17. F. Foret, M. Demi, V. Kahle, and P. Bocek, “On-line fiber optic UV detection cell and conductivity cell for capillary zone electrophoresis”. Electrophoresis, 7 1986 430.

    Article  Google Scholar 

  18. G.J.M. Bmin, G. Stegeman, A.C. van Ästen, X. Xu, J.C. Kraak, and H. Poppe, “Optimization and evaluation of the performance of arrangements for UV detection in high resolution separations using fused silica capillaries”, J. Chromatogr., 559 1991 163.

    Article  Google Scholar 

  19. F. Foret, S. Fanali, L. Ossicini, and P. Bocek, “Indirect photometric detection in capillary zone electrophoresis”, J. Chromatogr., 470 1986 299.

    Article  Google Scholar 

  20. P.J. Oefner, A.E. Vomdran, E. Grill, C. Huber, and G.K. Bonn, “Capillary zone electrophoretic analysis for carbohydrates by direct and indirect UV detection”, Chromatographia, 34 1992 308–316.

    Article  Google Scholar 

  21. G.J.M. Bmin, A.C. van Ästen, X. Xu, and H. Poppe, “Theoretical and experimental aspects of indirect detection in capillary electrophoresis”, J. Chromatogr., 608 1992 97.

    Article  Google Scholar 

  22. Y. Chen, and N.J. Dovichi, “Subattomole amino acid analysis by capillary zone electrophoresis and laser-induced fluorescence”. Science, 242 1988 562–564.

    Article  Google Scholar 

  23. F.-T.A. Chen, A. Tusak, S.L. Pentoney Jr., K. Konrad, C. Lew, E. Koh, and J. Sternberg, “Semiconductor laser-induced fluorescence detection in capillary electrophoresis using a cyanine dye”, J. Chromatogr. A, 652 1993 355–360.

    Article  Google Scholar 

  24. W. Kühr, and E.S. Yeung, “Optimization of sensitivity and separation in capillary zone electrophoresis with indirect fluorescence detection”.Anal. Chem., 60 1988 2642.

    Article  Google Scholar 

  25. L. Gross, and E.S. Yeung, “Indirect fluorometric detection of cations in capillary zone electrophoresis”, Anal. Chem., 62 1990 427.

    Article  Google Scholar 

  26. T.W. Gamer, and E.S. Yeung, “Indirect fluorescence detection of sugars separated by capillary zone electrophoresis with visible laser excitation”, J. Chromatogr., 515 1990 639.

    Article  Google Scholar 

  27. X. Huang, T.K. Pang, M.J. Gordon, and R.N. Zare, “On-column conductivity detector for capillary zone electrophoresis”. Anal Chem., 59 1987 2747–2749.

    Article  Google Scholar 

  28. X. Huang, J.A. Luckey, M.J. Gordon, and R.N. Zare, “Quantitative analysis of low molecular weight carboxylic acids by capillary zone electrophoresis”. Anal. Chem., 61 1989 766–770.

    Article  Google Scholar 

  29. R.A. Wallingford, and A.G. Ewing, “Capillary zone electrophoresis with electrochemical detection”, Anal. Chem., 59 1987 1762–1766.

    Article  Google Scholar 

  30. T.M. Olefirowicz, and A.G. Ewing, “Capillary Electrophoresis in 2 and 5 micron diameter capillaries: application to cytoplasma analysis” Anal.Chem., 62 1990 1872–1876.

    Article  Google Scholar 

  31. W. Yu, and N.J. Dovichi, “Attomole amino acid determination by capillary zone electrophoresis with thermoopdcal absorbance detection”, Anal Chem., 61 1989 37.

    Article  Google Scholar 

  32. A.E. Bruno, A. Paulus, and D.J. Bomhop, “Thermooptical absorbtion detection in 25-mm-i.d. capillaries: capillary electrophoresis of dansyl amino acid mixtures”. Appi Spectrosc., 45 1991 462–467.

    Article  Google Scholar 

  33. J. Cai, and J. Henion, “Capillary electrophoresis-mass spectrometry”, J. Chromatogr. A, 703 1995 667–692.

    Article  Google Scholar 

  34. R.D. Smith, D.R. Goodlett, and J.H. Wahl, “Capillary electrophoresis — mass spectrometry”, in “Handbook of capillary electrophoresis”, (ed. J.P. Landers), CRC Press, 1994, Boca Raton, 185–206.

    Google Scholar 

  35. J.W. Jorgenson, and K.D. Lukacs, “Capillary zone electrophoresis”. Science, 222 1983 266–272.

    Article  Google Scholar 

  36. M. Albin, R. Weinberger, E. Sapp, and S. Moring, “Fluorescence detection in capillary electrophoresis: evaluation of derivatizing reagents and techniques”, Anal Chem., 63 1991 417–421.

    Article  Google Scholar 

  37. E. Gassman, J.E. Kuo, and R.N. Zare, “Electrokinetic separation of chiral compounds”, Science, 230 1985 813–814.

    Article  Google Scholar 

  38. H. Swerdlow, J.Z. Zhang, D.Y. Chen, H.R. Harke, R. Grey, S. Wu, C. Fuller, and N.J. Dovichi, “Three DNA sequencing methods using capillary gel electrophoresis and laser-induced fluorescence”, Anal Chem, 63 1991 2835–2841.

    Article  Google Scholar 

  39. J.V. Sweedler, J.B. Shear, H.A. Fishman, R.N. Zare, and R.H. Scheller, “Fluorescence detection in capillary zone electrophoresis using a charged coupled device with time-delayed integration”. Anal Chem., 63 1991 496–502.

    Article  Google Scholar 

  40. D.T. Chiù, A. Hsiao, A. Gaggar, R.A. Garza-Lopez, O. Orwar, and R.N. Zare, “Injection of ul-trasmall samples and single molecules into tapered capillaries”. Anal Chem., 69 1997 1801–1807.

    Article  Google Scholar 

  41. W. Tan, and E.S. Yeung, “Monitoring the reactions of single enzymes molecules and single metalions”. Anal Chem., 69 1997 4242–4248.

    Article  Google Scholar 

  42. A. Castro, and J.G.K. Williams, “Single-molecule detection of specific nucleic acid sequences in unamplified genomic DNA”, Anal Chem., 69 1997 3915–3920.

    Article  Google Scholar 

  43. R.P. Haugland, “Handbook of fluorescent probes and research chemicals”. Molecular Probes, 1996, Eugene.

    Google Scholar 

  44. A. Klockow, A. Paulus, V. Figueiredo, R. Amado, and H.M. Widmer, “Determination of carbohydrates in fruit juices by liquid chromatography”, J. Chromatogr., A, 680 1994 187–200.

    Article  Google Scholar 

  45. L.A. Colon, R. Dadoo, and R.N. Zare, “Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a copper microelectrode”.Anal Chem., 65 1993 476–481.

    Article  Google Scholar 

  46. J. Ye, and R.P. Baldwin, “Determination of carbohydrates, sugar acids and alditols by capillary electrophoresis and electrochemical detection at a copper electrode”, J. Chromatogr. A, 687 1994 141–148.

    Article  Google Scholar 

  47. X. Huang, and W.T. Kok, “Determination of sugars by capillary electrophoresis using cuprousoxide modified electrodes”, J. Chromatogr. A, 707 1995 335–342.

    Article  Google Scholar 

  48. J. Ye, and R.P. Baldwin, “Amperometric detection in capillary electrophoresis with normal size electrodes”. Anal Chem., 65 1993 3525–3527.

    Article  Google Scholar 

  49. R.M. Cassidy, W. Lu, and V.-P. Tse, “Auxiliary Electroosmotic Flow for Postcapillary Reaction Detection in Capillary Electrophoresis”, Anal Chem., 66 1994 2578–2583.

    Article  Google Scholar 

  50. T.J. O’Shea, S.M. Lunte, and W.R. LaCourse, “Detection of carbohydrates by capillary electrophoresis with pulsed amperometric detection”. Anal Chem., 65 1993 948–951.

    Article  Google Scholar 

  51. A.E. Bmno, B. Krattiger, F. Maystre, and H.M. Widmer, “On-column laser-based refractive index detector for capillary electrophoresis”, Anal Chem., 63 1991 2689–2697.

    Article  Google Scholar 

  52. J.H. Knox, and I.H. Grant, “Miniaturization in pressure and electroendoosmotically driven liquid chromatography: some theoretical considerations”, Chromatographia, 24 1987 135–143.

    Article  Google Scholar 

  53. B. Behnke, E. Grom, and E. Bayer, “Evaluation of the parameters determining the performance of electrochromatography in packed capillary columns”, J. Chromatogr. A, 716 1995 207–213.

    Article  Google Scholar 

  54. M.T. Dulay, C. Yan, D.J. Rakesraw, and R.N. Zare, “Automated capillary electrochromatography: reliability and reproducibility studies”, J. Chromatogr. A, 725 1996 361–366.

    Article  Google Scholar 

  55. N.W. Smith, and M.B. Evans, “The efficient analysis of neutral and high polar pharmaceutical compounds using reversed-phase and ion-exchange electrochromatography”, Chromatographia, 41 1995 197–203.

    Google Scholar 

  56. M.G. Khaledi, “Micellar electrokinetic capillary chromatography”, in “Handbook of capillary electrophoresis”, (ed. J.P. Landers), CRC Press, 1994, Boca Raton, 43–93.

    Google Scholar 

  57. J.P. Landers, “Handbook of capillary electrophoresis”, CRC Press, 1994, Boca Raton.

    Google Scholar 

  58. F. Kilar, “Isoelectric focusing in capillaries”, in “Handbook of capillary electrophoresis”, (ed. J.P. Landers), CRC Press, 1994, Boca Raton, 95–109.

    Google Scholar 

  59. C. Heller, “Analysis of Nucleic Acids by Capillary Electrophoresis”, Vieweg Publishing, 1997, Wiesbaden.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Paulus, A., Klockow-Beck, A. (1999). Capillary electrophoresis, instrumentation and modes. In: Analysis of Carbohydrates by Capillary Electrophoresis. Chromatographia CE-Series, vol 3. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-85020-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-85020-1_2

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-85022-5

  • Online ISBN: 978-3-322-85020-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics