Skip to main content

Spatio-Temporal Constraints in Inverse Electrocardiography

  • Chapter

Abstract

One cannot uniquely determine the bioelectric sources in the heart solely from the observed potentials on the body surface [1] without first postulating models of cardiac electric sources and of a volume conductor that characterizes the torso’s passive electric properties. With both models in place, one can solve the forward problem by computing the potential distribution on the body surface from the given sources [2], and the inverse problem [3] by estimating source-model parameters from the observed body-surface potentials (given the restrictions implied by the source model).The inverse problem can, therefore, be viewed as a parameter-estimation problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. von Helmholtz über einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Pogg. Ann. Physik und Chemie, 89:211–233, 1853.

    Article  Google Scholar 

  2. R.M. Gulrajani, F.A. Roberge, and G.E. Mailloux. The forward problem of electrocardiography. In P.W. Macfarlane and T.D.V. Lawrie, editors, Comprehensive Electrocar-diology, chapter 8. Pergamon Press, Oxford, 1989. volume I.

    Google Scholar 

  3. R.M. Gulrajani, F.A. Roberge, and P. Savard. The inverse problem of electrocardiography. In P.W. Macfarlane and T.D.V. Lawrie, editors, Comprehensive Electrocardiology, chapter 9. Pergamon Press, Oxford, 1989. volume I.

    Google Scholar 

  4. B.J. Messinger-Rapport and Y. Rudy. Computational issues of importance to the inverse recovery of epicardial potentials in a realistic heart-torso geometry. Math. Biosc., 96:1–35, 1989.

    Article  Google Scholar 

  5. Y. Rudy and B.J. Messinger-Rapport. The inverse problem in electrocardiology: Solutions in terms of epicardial potentials. CRC Crit. Rev. Biomed. Eng., 16:215–268, 1988.

    Google Scholar 

  6. A. van Oosterom and J.J.M. Cuppen. Computing the depolarization sequence at the ventricular surface from body surface potentials. In Antalozcy Z and Préda I, eds., Electrocardiology 1981., pages 101–106, Akadémiai Kiadó, Budapest, 1982.

    Google Scholar 

  7. J.J.M. Cuppen and A. van Oosterom. Model studies with the inversely calculated isochrones of ventricular depolarization. IEEE Trans. Biomed. Eng., BME-31:652–659, 1984.

    Article  Google Scholar 

  8. C.L. Lawson and R.J. Hanson. Solving Least Squares Problems. Prentice-Hall, Engle-wood Cliffs, N.J., 1974.

    MATH  Google Scholar 

  9. D.W. Marquardt. An algorithm for least-squares estimation of non-linear parameters. J. Soc. Indust. Appl. Math., 2:431–441, 1963.

    Article  MathSciNet  Google Scholar 

  10. J.V. Beck and K.J. Arnold. Parameter Estimation in Engineering and Science. Wiley, New York, 1977.

    MATH  Google Scholar 

  11. G.J.M. Huiskamp and A. van Oosterom. The depolarization sequence of the human heart surface computed from measured body surface potentials. IEEE Trans. Biomed. Eng., BME-35:1047–1058, 1988.

    Article  Google Scholar 

  12. G.E. Forsythe, M.A. Malcolm, and C.B. Moler. Computer methods for mathematical computations. Prentice-Hall, Englewood Cliffs, N.J., 1977.

    MATH  Google Scholar 

  13. G. Walsh. Methods of Optimization. John Wiley & Sons, London, 1975.

    Google Scholar 

  14. R.C. Barr and M.S. Spach. Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog. Circ. Res., 42:661–675, 1978.

    Google Scholar 

  15. P. Colli Franzone, L. Guerri, S. Tentonia, C. Viganotti, S. Baruffi, S. Spaggiari, and B. Taccardi. A mathematical procedure for solving the inverse potential problem of electrocardiography. Analysis of the time-space accuracy from in vitro experimental data. Math. Biosc, 77:353–396, 1985.

    Article  MATH  Google Scholar 

  16. R.C. Barr, T.C. Pilkington, J.P. Boineau, and C.L. Rogers. An inverse electrocardiographic solution with an on-off model. IEEE Trans. Biomed. Eng., BME-17:49–57, 1970.

    Article  Google Scholar 

  17. H.S. Oster and Y. Rudy. The use of temporal information in the regularization of the inverse problem of electrocardiography. IEEE Trans. Biomed. Eng., BME-39:65–75, 1992.

    Article  Google Scholar 

  18. P. Colli Franzone, L. Guerri, B. Taccardi, and C. Viganotti. Inverse epicardial mapping in the human case. In Schubert E, editor, Proc Symp Electrophysiology of the Heart, pages 19–33. Plenum, New York, 1980.

    Google Scholar 

  19. P.C. Hansen. Numerical tools for the analysis and solution of Fredholm integral equations of the first kind. Inverse Problems, 8:849–872, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  20. G.J.M. Huiskamp and A. van Oosterom. Finding a solution to the inverse problem in electrocardiography. In Ripley KL, editor, Computers in Cardiology, pages 391–394, Washington, IEEE Computer Society Press, 1988.

    Google Scholar 

  21. D. Dürrer, R.T. van Dam, G.E. Freud, M.J. Janse, F.L. Meijler, and R.C. Arzbaecher. Total excitation of the isolated human heart. Circulation, 41:899–912, 1970.

    Google Scholar 

  22. G.J.M. Huiskamp. Difference formulas for the surface Laplacian on a triangulated surface. Journal of Computational Physics, 95:477–496, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  23. The Numerical Algorithms Group Ltd., Oxford, subroutine E04KBF, NAG Fortran mark II edition, 1985.

    Google Scholar 

  24. D.L. Phillips. A technique for the solution of certain integral equations of the first kind. J Ass Comp Mach, 9:84–96, 1962.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

van Oosterom, A., Huiskamp, G. (1996). Spatio-Temporal Constraints in Inverse Electrocardiography. In: Ghista, D.N. (eds) Biomedical and Life Physics. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-85017-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-85017-1_19

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-85019-5

  • Online ISBN: 978-3-322-85017-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics