Skip to main content
  • 26 Accesses

Abstract

In these lectures I would like to describe a model of hadronic scattering at large momentum transfer, either transverse or longitudinal. This model emphasizes in this regime the importance of forces involving the interchange of constituents of the hadrons, hence the name, CIM, or constituent interchange model.1, 2 As will be shown, this model should not be thought of as being different from quark-quark scattering models, or from QCD (quantum chromodynamics) but contains both of them. Omission of the CIM diagrams is not a consistent approximation. The CIM is, in fact, a rearrangement of standard perturbation theory to take into account the fact that the binding force is very strong in color singlet states. We could call this Singlet Dominance. For example, if one demands that an anti-quark, or \(\bar q,\), be found a large distance from the center of a baryon, the easiest way for it to propagate to such distances is via intermediate states involving light mesonic (singlet) states. But more of this later on when the CIM contributions and their absolute normalization will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Blankenbecler, S. J. Brodsky, and J. F. Gunion, Phys. Lett. B39, 649 (1972); 42, 461 (1973); Phys. Rev. D12, 3469 (1975). Spectator counting rules for structure functions are derived in R. Blankenbecler and S. J. Brodsky, Phys. Rev. D10, 2973 (1974); J. Gunion, ibid. 10, 242 (1974). The fusion reactions qq̄ MM have been particularly emphasized by P. V. Landshoff and J. C. Polkinghorne, Phys. Rev. D10,, 891 (1974). See also M. K. Chase and W. J. Stirling, Cambridge U. preprint, DAMTP-77/15 and references therein.

    Article  Google Scholar 

  2. For a general review, see D. Sivers, S. J. Brodsky, R. Blankenbecler, Physics Reports 23C, No. 1 (1976). See also Refs. 13, 15, and S. J. Brodsky, R. Blankenbecler, J. F. Gunion, XII Recontre de Moriond, Flaine, France, March 1977.

    Google Scholar 

  3. I. A. Schmidt and R. Blankenbecler, Phys. Rev. D15, 3321 (1977). I. A. Schmidt, SLAC Report No. 2P3, 1977.

    Google Scholar 

  4. M. Duong-Van, K. V. Vasavada, and R. Blankenbecler SLAC-PUB-1882, Phys. Rev. D16, 1389 (1977), and M. Duong-Van and R. Blankenbecler, SLAC-PUB-2P17 (Phys. Rev., in print).

    Google Scholar 

  5. S. D. Drell and T. M. Yan, Phys. Rev. Lett. 25, 316 (1970); Ann. Phys. 6b, 578 (1971).

    Article  Google Scholar 

  6. R. D. Amado and R. M. Woloshyn, IAS preprint 77-0374 (1977). To be published in Phys. Rev.

    Google Scholar 

  7. There is some confusion in the literature on this point. Counting rules giving the energy dependence at fixed angle for exclusive scattering were derived by S. J. Brodsky and G. Farrar, Phys. Rev. Lett. 31, 1153 (1973); Phys. Rev. D11., 1309 (1975). V. Matveev, R. Muradyan, and A. Tavhelidze, Nuovo Cimento Lett. 7, 719 (1973).

    Article  Google Scholar 

  8. Spectator counting rules giving the behavior of general G functions wer first derived by R. Blankenbecler and S. J. Brodsky, Phys. Rev. D16, 2973 (1974).

    Google Scholar 

  9. J. Papp et al., Phys. Rev. Lett. 34, 601 (1975). J. Papp, Ph.D. Thesis, University of California, Berkeley, Report LBL-3633 (1975).

    Article  Google Scholar 

  10. R. G. Arnold et al., Phys. Rev. Lett. 35, 776 (1975). Lower energy data is taken from: J. Elias et al., Phys. Rev. 177, 2075 (1969); and S. Galster et al., Nucl. Phys. B32, 221 (1971).

    Article  Google Scholar 

  11. S. J. Brodsky and B. T. Chertok, Phys. Rev. D14, 3003 (1976).

    Google Scholar 

  12. I. A. Schmidt and R. Blankenbecler, Phys. Rev. D16, 1318 (1977). See also A. Fernandez-Pacheco, J. A. Grifols and I. A. Schmidt, SLAC-PUB-1993, (1977).

    Article  Google Scholar 

  13. Compare, for example, with W. B. Atwood and G. B. West, Phys. Rev. D7, 773 (1973).

    Google Scholar 

  14. The data are from, for example, J. W. Cronin et al., Phys. Rev. D11, 3105 (1975). D. Antveasyan et al., Phys. Rev. Lett. 38, 112 (1977); G. Donaldson et al., Phys. Rev. Lett. 36, 1110 (1976); F. W. Busser et al., Nucl. Phys. B106, 1 (1976); and B. Alper et al., Nucl. Phys. B100, 237 (1975). See ref. 2 for a review of elastic data, and A. Eide et al., Nucl. Phys. B60, 173 (1973). See also H. I. Miettinen, SLAC-PUB-1813, presented at the Third European Symposium on Anti-nucleon-Nucleon Reactions, Stockholm (1976); J. L. Stone et al., Phys. Rev. Lett. 38, 1315, 1317 (1977); V. Chabaud et al., Phys. Lett. 41B, 209 (1972); A. Donnachie and P. R. Thomas, Nuovo Cimento 19A, 279 (1974).

    Google Scholar 

  15. Our discussion here follows work reported in ref. 2 and in R. Blankenbecler S. J. Brodsky and J. F. Gunion, SLAC-PUB-(to be published). For comparison see B. Pire, Phys. Rev. D15, 3475 (1977).

    Google Scholar 

  16. S. M. Berman and M. Jacob, Phys. Rev. Lett. 25, 1683 (1970); S. M. Berman, J. D. Bjorken, and J. B. Kogut, Phys. Rev. D4, 3388 (1971); J. Bjorken, Phys. Rev. D8, 3098 (1973). See also R. F. Cahalan, K. A. Geer, J. Kogut, and L. Susskind, Phys. Rev. D11, 1199 (1975); M. Bander, M. Barnett, D. Silverman, Phys. Lett. 48B, 243 (1974).

    Article  Google Scholar 

  17. In particular see D. Sivers and R. Cutler, Phys. Rev. D16, 679 (1977) and B. Combridge, J. Kripfganz, and J. Ranft, Phys. Lett. 70B, 234 (1977).

    Google Scholar 

  18. In contrast see R. D. Field and R. P. Feynman, Phys. Rev. D15, 2590 (1977); R. D. Field, R. P. Feynman, and G. C. Fox, CALT-68-595 (1977); G. C. Fox, CALT-68-573 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter Dittrich

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Blankenbecler, R. (1979). Composite Hadrons and Relativistic Nuclei. In: Dittrich, W. (eds) Recent Developments in Particle and Field Theory. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-83630-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-83630-4_2

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-528-08426-4

  • Online ISBN: 978-3-322-83630-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics